CHAPTER 1 4

SECTIONS 14.11 and 14.12

'14.11 Flux and Circulation

Vector V
represents direction of gas flow at
point P. A is a unit area at P
perpendicular to V
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Flux for
a surface S is the mass of gas
passing through S per unit time
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a closed surface is the mass of gas
flowing out of the surface per unit

time
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In many branches of engineering and physics we encounter the concepts of flux and circulation.
In this section we discuss the relationships between flux and divergence and between circulation
and curl. We find a physical setting mentioned in Section 14.1 of the textbook most useful in
developing these ideas.

Fluid Flow

Consider a gas flowing through a region D of space. At time ¢ and point P(x, y, z) in D, gas
flows through P with velocity v(x, y, z,t). If A is a unit area around P perpendicular to v
(Figure 14.51) and p(x, y, z, t) is density of the gas at P, then the amount of gas crossing A
per unit time is pv. At every point P in D, then, the vector pv is such that its direction v gives
velocity of gas flow, and its magnitude p|v| describes the mass of gas flowing in that direction
per unit time.

Consider some surface S in D (Figure 14.52). If n is a unit normal to S, then pv - n is the
component of pv normal to the surface S. If dS is an element of area on S, then pv - ndS
describes the mass of gas flowing through d S per unit time. Consequently,

//,ov-ﬁdS
s

is the mass of gas flowing through S per unit time. This quantity is called flux for sur-
face S.
If S is a closed surface (Figure 14.53) and n is the unit outer normal to S, then

#pv-ﬁdS
s

is the mass of gas flowing out of surface S per unit time. If this flux (for closed ) is positive,
then there is a net outward flow of gas through § (i.e., more gas is leaving the volume bounded
by § than is entering); if the flux is negative, the net flow is inward.

If we apply the divergence theorem to the flux integral over the closed surface S, we have

#pv -ndS = /// V- (pv)dV. (14.60)
S \%4

Now the flux (on the left side of this equation) is the mass of gas per unit time leaving S. In
order for the right side to represent the same quantity, V - (pv) must be interpreted as the mass
of gas leaving unit volume per unit time, because then V - (pv) d V represents the mass per unit
time leaving d'V, and the triple integral is the mass per unit time leaving V.

We have obtained, therefore, an interpretation of the divergence of pv. The divergence of
pv is the flux per unit volume per unit time at a point: the mass of gas leaving unit volume in
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16  Chapter 14 SECTIONS 14.11 and 14.12

Circula-
tion for radial gas flow is zero
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unit time. We can use this idea of flux to derive the equation of continuity for fluid flow. The

triple integral
a ]
It =g ff,rev
y ot at Vv

measures the time rate of change of mass in a volume V. If this triple integral is positive,
then there is a net inward flow of mass; if it is negative, the net flow is outward. We conclude,
therefore, that this triple integral must be the negative of the flux for the volume V'; that is,

0 =
f/f [v (ov) + ]dv_o

If V- (pv) and dp/ 0t are continuous functions, then this equation can hold for arbitrary volume
V only if

or

ap
V- (pv) + 3 =0 (14.61)

This equation, called the equation of continuity, expresses conservation of mass; it is basic to
all fluid flow.

If C is a closed curve in the flow region D, then the circulation of the flow for the curve
C is defined by

I' = % v - dr. (14.62)
c

To obtain an intuitive feeling for I', we consider two very simple two-dimensional flows. First,
suppose v = xi+ yj, so that all particles of gas flow along radial lines directed away from
the origin (Flgure 14.54). In this case, the line integral defining I" is independent of path and
I' = 0 for any curve whatsoever.

Second, suppose v = —yl + xJ, so that all particles of the gas flow counterclockwise
around circles centred at the origin (Figure 14.55). In this case I does not generally vanish. In
particular, if C is the circle x> 4+ y? = r2, then v and dr are parallel, and

r =?§v-dr=7§|v|ds =¢\/y2+x2ds=¢rds = 2nrl.
c c c c

These two flow patterns indicate perhaps that circulation is a measure of the tendency for
the flow to be circulatory. If we apply Stokes’s theorem to the circulation integral for the closed

curve C, we have
%V ~dr = / (V xv)-ndS, (14.63)
C S

where § is any surface in the flow with boundary C. If the right side of this equation is to
represent the circulation for C also, then (V x v) -n d S must be interpreted as the circulation for
the curve bounding d S (or simply for d S itself). Then the addition process of the surface integral
(Figure 14.56) gives the circulation around C, the circulation around all internal boundaries
cancelling. Butif (V x v) - ndS is the circulation for d S, then it follows that (V X v) - n
must be the circulation for unit area perpendicular to n. Thus V x v describes the circulatory
nature of the flow v; its component (V X v) - 1 in any direction describes the circulation for
unit area perpendicular to n.

Electromagnetic Theory

The concepts of flux and circulation also play a prominent role in electromagnetic theory.
For example, suppose a dielectric contains a charge distribution of density p (charge per unit
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14.11 Flux and Circulation 17

volume). This charge produces an electric field represented by the electric displacement vector
D. If S is a surface in the dielectric, then the flux of D through S is defined as

[[p-ias.
s

and in the particular case in which S is closed, as

#D-ﬁdS.
S

Gauss’s law states that this flux integral must be equal to the total charge enclosed by S. If V
is the region enclosed by S, we can write

#D~ﬁdS=///pdV. (14.64)
S Vv

On the other hand, if we apply the divergence theorem to the flux integral, we have

fho-ias = [[[ v pav.
S \4
Consequently,
///V-DdV:///,odV = ///(V-D—p)dV:O.
v v 1%

If V- D and p are continuous functions, then the only way this equation can hold for arbitrary
volume V in the dielectric is if

V-D=p. (14.65)

This is the first of Maxwell’s equations for electromagnetic fields.
Another of Maxwell’s equations can be obtained using Stokes’s theorem. The flux through
a surface S of a magnetic field B is defined by

[[B-ias.
s

If B is a changing field, then an induced electric field intensity E is created. Faraday’s induction
law states that the time rate of change of the flux of B through S must be equal to the negative
of the line integral of E around the boundary C of S:

0
fE-dr — ——//B~ﬁdS. (14.66)
c ar JJs

But Stokes’s theorem applied to the line integral also gives

%E%r://(VxE)-ﬁdS.
c s

It follows, therefore, that if § is stationary,

R B 0B\ .
f/(VxE)-ndS://——-ndS - /f VXE+ — ] -ndS =0.
S S Jat S Jat

Once again, this equation can hold for arbitrary surfaces §, if V x E and dB/d¢ are continuous,
only if

oB
VXE=——. (14.67)
ot
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18  Chapter 14 SECTIONS 14.11 and 14.12

'14.12 Vector Analysis in Orthogonal Coordinates

We used polar, cylindrical, and spherical coordinates in Chapter 13 to evaluate multiple integrals;
they are useful in many other contexts. In this section we discuss the gradient, divergence, and
curl in these coordinate systems. We do so in detail for spherical coordinates, and develop similar
results for cylindrical coordinates and other orthogonal coordinate systems in the exercises.

Spherical coordinates (9, ¢, 6) are related to Cartesian coordinates by the equations
x = NRsingpcosf, y = NRsingsing, z = Ncose. (14.68)

With the restrictions, B > 0,0 < ¢ < m, —w < 6 < 7, every point in space (except those
on the z-axis) has exactly one set of spherical coordinates. Inverse to transformation 14.68 are
the equations

R=x2+y2+722, ¢ = Cos™! ;, 0 = Tan_1<z) + 7,
X2+ y2 4+ 72 x
(14.69)

where in the formula for 6, it must be decided, depending on x, y, and z, whether 7t should be
added, 7t should be subtracted, or neither should be done.

To express a scalar function f (x, y, z) in terms of spherical coordinates, we use equations
14.68 to write f (N sin ¢ cos 6, N sin P sin 6, N cos ¢). Expressing vectors in spherical coor-
dinates is more complicated. Vectors i, J and k form a basis for all vectors in space; that is,
every vector v can be expressed as a linear combination v = le + vy, J + vzk of i, j, and k
where vy, vy, and v, are the Cartesian components of v. To find the corresponding basis for
spherical coordinates, we begin by calling a line with equations y = constant, z = constant a
coordinate curve in Cartesian coordinates; it is a straight line parallel to the x-axis. Every point
on the line has the same y- and z-coordinates; only the x-coordinate varies. A unit tangent
vector to this line in the direction of increasing x is i. Similarly, 3 is tangent to the coordinate
curve (line) x = constant, 7 = constant, and k is tangent to x = constant, y = constant, and this
is true at every point in space.

Coordinate curve along Coordinate curve along

which only N varies

X

e

\

y

C,;: Coordinate curve
along which only i

T ¢ = constant (come)
- — 6 = constant (plane)

which only ¢ varies

C,: Coordinate curve z
along which only ¢
varies

—— 6 = constant (plane)

I = constant (sphere)

\
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X
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which only 6 varies

14.12  Vector Analysis in Orthogonal Coordinates 19

Unit tangent vectors to coordinate

curves are mutually perpendicular

Z

C,: Coordinate curve
along which only
0 varies

=N

___—— 3= constant (sphere)

¢ = constant (cone)

The equations ¢ = constant, 6 = constant define a (half) straight line Cy; from the origin; it
is called a coordinate curve in spherical coordinates along which only N varies (Figure 14.57a).
Parametric equations for Cy are equations 14.68 with ¢ and 9 fixed. If r = xi+ yj + zk is
the position vector of points on Csg;, then a unit tangent vector to Cy, pointing in the direction
in which N increases, at any point on Cy is

B (sin ¢ cos 6, sin ¢ sin 6, cos ¢)
\/sin2 ¢ cos? O + sin® @ sin® O + cos? ¢
= (sin ¢ cos B, sin ¢ sin G, cos ¢p). (14.70a)

. or/on
G r/

A unit tangent vector to the coordinate curve Cy in Figure 14.57b along which ¢ varies, but i
and 6 are constant, and points in the direction in which ¢ increases, is

A 0r/dgp (N cosgpcosB, Ncos @ sinh, —N sin ¢p)
|0r/d¢] VN2 cos? p cos? O + N2 cos? g sin2 O + N2 sin? p
= (cos ¢ cos O, cos @ sinf, — sin @). (14.70b)

Finally, a unit tangent vector to the coordinate curve Cy in Figure 14.57¢ is
_ (—NRsing sin 6, R sin ¢p cos 6, 0)
|or/00)| VN2 sin2 ¢ sin2 @ + R2 sin? P cos? O
= (—sinf, cos b, 0). (14.70c)

é 8r/89

All three unit vectors S?t, qAS, and 9 are drawn at the same point in Figure 14.58. They are
mutually perpendicular, as can also be seen algebraically by noting that

A

R-0=%-¢=0-¢=0. (14.71)

Because this is true at every point in space (except on the z-axis), spherical coordinates are said
to constitute a set of orthogonal curvilinear coordinates. It is also a right-handed coordinate

system in that R x ¢ = 6. Unlike Cartesian coordinates where i i, _], and k always have the
same direction, directions of ’R ¢ and 0 vary from point to point.

Vectors R, (/) and 6 form a basis for all vectors in space; that is, every vector v can be
expressed in the form v = vsnfﬁ + v¢¢ + v@0 where vy, vy, and vg are called the spherical
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20  Chapter 14 SECTIONS 14.11 and 14.12

components of v. Given the Cartesian components of v, we can find its spherical components
at any point (i, ¢, 0) by taking scalar products with %, ¢, and 6:

Ujp = V- K = (vx, vy, ;) - (sin¢ cos @, sin @ sin 6, cos ¢)
= vysingcosO + vysin@sin6 + v, cos ¢, (14.72a)

Vp = V- ¢ = (Vy, vy, ;) - (cosgcosf, cossinf, —sin¢)

= vy cos¢cost + vy cosPsing — v, sing, (14.72b)

>
I

vg = V-0 = (v, vy, v,) - (—sin6, cos, 0)

= —vysin€ + vy cos 0. (14.72¢).

These equations define the spherical components of a vector in terms of its Cartesian components.
It is understood that vy, vy, and v, are to be expressed in terms of )R, ¢, and 6. We can invert
these equations and express vy, vy, and v, in terms of vy, vy, and vy. Scalar products of

v = vmﬁi + v¢$ + vgé with i, j, and k give
vy = vgfh -1+ v¢¢ i+ v90
= vy sin ¢ cos @ + vy cos ¢ cosd — vg sinb, (14.73a)
vy = vmﬁi-j-i-%(b'j-i- 000‘3
= vy singsin@ + vy cos P sinf + vg cos b, (14.73b)
v, = vmﬁi-f(+v¢$-f(+vgé-f(
= Vg COS P — Vy sin ¢. (14.73¢)

There is an important difference between Cartesian and spherical components of a vector.
No matter where the tail of a vector is placed, its Cartesian components are always the same;
spherical components 14.72 of a vector depend on where the tail is placed. This is a direct result
of the fact that i, j, and k always have the same direction, whereas gt (2), and 9 do not. This is
illustrated in the following example.

[ EXAMPLE 14.29

.

What are the spherical components of the vector i? Evaluate these components at the pomts

with Cartesian coordinates (1, 0, 0), (0, 1, 0), and (1, 1, 1). In each case draw i, %, ¢ and 0
at the point.

SOLUTION  Since Cartesian components of i are (1,0, 0), equations 14.72 give
ip = singpcost, iy = cospcosd, iy = —sind.

Thus, i = sin ¢ cos 6 R + cos ¢ cos 6 (Ab — sin6 0. Spherical coordinates of the point with
Cartesian coordinates (1, 0, 0) are (1, 7r/2, 0) so that at this point, i=% (Figure 14.59a).
Spherical coordinates of the point with Cartesian coordinates (0, 1, 0) are (1, /2, 7 /2), and
at this pointf =0 (Figure 14.59b). Finally, the point with Cartesian coordinates (1, 1, 1) has
spherical coordinates («/5, Cos™' (1 / \/5), 7 /4), and at this point

iy = sin[Cos™! (1/+/3)]cos (/4) = 1/3/3, iy = (1/V/3)(1/v2) = 1/v/6, i = —1/V2;

thatis, i = (1/+/6)(v2% + ¢ — +/30) (Figure 14.59¢).
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14.12  Vector Analysis in Orthogonal Coordinates 21

i=—0 i=
1

NG
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V2R+d—/30) at (1,1,1)

at (0, 1, 0)

Py N

Because spherical coordinates are orthogonal (equation 14.71), calculating the scalar product of
two vectors with spherical components u = (ugy, Uy, Ug) and v = (Vy, Vg, V) is much like
that with Cartesian components: multiply corresponding components and add,

u-v = (uph + qu& + ugh) - (v + v¢‘;5 + vf) = uyoy + UpVp + UgVg. (14.74)
Furthermore, using the facts that R x (;S = 9, (;5 X 9 = 2?%, and 9 x R = (;5, we obtain
uxv= (uyh + Md)& + ugh) x (v + v¢$ + ve0)
= (ugpve — ugvg)R + (ugvy — Uy vg)P + (upvy — M¢vm)9-

This is more easily remembered in determinant form,

% ¢ 0
UXV=|uy uy ugl- (14.75)
Up Uy Uy

Once again, the simplicity here is due to equations 14.71: spherical coordinates are orthogonal.

[ EXAMPLE 14.30

.

Find the scalar and vector products of the vectors u = xi+ yj —z%kandv = xi+ yj + 7%k in
spherical coordinates by (a) calculating the products in Cartesian coordinates and transforming
to spherical coordinates and (b) transforming u and v to spherical components and using 14.74
and 14.75.

SOLUTION

(a) In Cartesian coordinates u - v = x> + y*> — z*, and when we transform to spherical
coordinates, u - v = M2 sin? ¢ — N4 cos? ¢. Furthermore,

ij Kk ) )
uxv=|x y —-z*| = 2yz2i — 2xz2j.
x y 2

Using 14.72 we can express this in terms of R, qAS, and :
uxv= (2yz’sin¢gcosh — 2xz”sin ¢ sin 0% + (2yz* cos ¢ cos @ — 2xz° cos ¢ sin 9)(2)
+ (—2yz2 sin@ — 2xz% cos 9)&
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22  Chapter 14 SECTIONS 14.11 and 14.12

= 20% cos” ¢ sin @ (N sin ¢ sin O cos @ — N sin ¢ cos O sin 0)%
+ 202 cos® ¢ cos ¢ (N sin ¢ sin O cos & — N sin @ cos O sin H)QAS
— 2% cos® ¢ (M sin ¢ sin® O + N sin ¢ cos’ 9)9

= —29R%sin o) cos’ o) 9.

(b) Spherical components of u and v are
u = (xsingcosf + ysingsind — 7 c0s¢>)§i + (xcos¢cosd + ycospsin@ + z° sin¢)($
+ (—xsin6 + ycos6)f
= (N sin® ¢ cos” O + Rsin® ¢ sin® @ — R cos’ )%
+ (Nsin¢ cos g cos® O + N sin ¢ cos ¢ sin® 6 + R sin ¢ cos’ d))(}
+ (—Nsing sinh cosf + N sin ¢ sin O cos 9)9
= (Msin® ¢ — R cos’ ¢)§i + (M sin ¢ cos ¢ + N sin ¢ cos’ (;5)(;5,
and similarly,
v = (Nsin® ¢ + R cos’ @)k + (N sin ¢ cos ¢ — R sin p cos” ¢)$
Consequently,
u-v= Nsin’p — R cos® p) (N sin® ¢ + R cos® ¢)
+ (M’ sin¢ cos® @ + N sin ¢ cos ) (—NR2 sin ¢ cos® ¢ + N sin ¢ cos @)
= RN sin* ¢ — R cos® p — R*sin® ¢ cos* p + N sin® ¢ cos” ¢
= RZsin (1 — cos® @) — R* cos* P (1 — sin® ) — R* sin? ¢ cos* ¢ + R sin? ¢ cos” ¢

= N sin” ¢ — R* cos® ¢
and
% ¢ 0
uxv=|NRsin¢p —R2cos’p NR2singpcos’¢ + Rsingpcos¢p 0
Rsin®¢p + R2cos’ @ —NR2singcos’p + Nsingpcosgp 0

= [(Nsin® p — N2 cos® @) (—NR? sin ¢ cos® ¢ + N sin ¢ cos @)
— (Msin® ¢ + N2 cos’ @) (N2 sin @ cos® ¢ + N sin ¢ cos ¢)]é
= —20R%sin ¢ cos’ ¢ 0.

)y N

We now discuss the gradient, divergence, and curl in spherical coordinates. éccording to
equations 14.72, the spherical components of the gradient vector V f = (3f/9x)i+ (3f/dy)
j+ (8f/0z)k of a function f(x, y, z) are

af . af . . af
(V) = —singpcost + —singsinf + — cos ¢, (14.76a)

ox dy 0z

/ of of . of

‘ \ (Vf)g = ——cos¢pcos + ——cos¢sinf — ——sin¢, (14.76b)

ox ay 0z

AN /NN oy

RN o6 R ¢ 6 R ¢ 6 (Ve =—asm9+50059 (14.76¢)
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14.12  Vector Analysis in Orthogonal Coordinates 23

But with the schematic to the left
af 0z _ af .

0 of o of o 0 0
—f = _f_x —f 4 - = —s1n¢cos€+—fsin¢sin9+—fcosﬁ,
on dx ON ady N dz ON ox ay 0z

and similarly,

9 9 9 9

_f = _fﬁ){cosq&cos@ + —fﬂtcosq‘)sin@ — —fﬂfsind),
3¢ ox dy 9z

a 0 0

_f — _—ffﬁsin¢sin9 + —fﬁﬁsinqﬁcos@.

30 dx dy

Therefore,
of 1 of 1 0f 4
U S S )
on NP N sin ¢ 00
Hence to find spherical components of the gradient of a function f (x, y, z), we can transform its
Cartesian components according to 14.76, or we can transform f(x, y, z) to f (N cos @ sin ¢,

N sin O sin ¢, N cos ¢) and use 14.77.

grad f = (14.77)

[ EXAMPLE 14.31

.
Use equations 14.76 and 14.77 to find the spherical components of V f when f(x, y,z) =
X2+ y 42
SOLUTION With V f = 2xi + 2yj + 322k, equations 14.76 give
(Vf)n = 2xsingpcosd + 2ysin¢gsinf + 372 cos ¢
= 2N sin® ¢ cos? O + 2N sin® ¢ sin® O + 3R cos” ¢ cos O
= 20 sin’ ¢ + 3R? cos® ¢ cos b,
(Vf)g = 2xcos¢pcost + 2ycospsint — 3z7%sin¢g
= 290 sin ¢ cos ¢ cos> O + 290 sin ¢ cos ¢ sin® 0 — 3R sin ¢ cos” @
= 20N sin ¢ cos p — 3N? sin ¢ cos” P,
(Vf)g = —2xsinf + 2y cosf
= —2Nsin ¢ sin 6 cos O + 2N sin ¢ sin O cos O
= 0.
Thus, grad f = (20 sin® ¢ + 3R cos® (,23)2?1 + (29 sin ¢ cos ¢ — 3R sin ¢ cos? ¢)¢AS. Alter-

natively, with f (9 cos 6 sin ¢, N sin O sin @, N cos @) = R?sin ¢ + N> cos’ ¢, equations
14.77 give

N 1 ~
grad f = (2N sin® ¢ + 3R> cos® P)R + 5 (2NR2 sin ¢ cos p — 3N cos” ¢ sin @) .

)y N

The divergence of a vector function v = v,i 4 vyj + vzﬁ is

v vy . vy 4 v, (1478)
SV = — 4+ —. .
dx ay 0z
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This can be changed to spherical coordinates by replacing x, y, and z according to 14.68.
Alternatively, using the schematic to the left yields

Jvy vy ON N vy 00 Qvy ¢
ax  OM dx 30 dx 9P Ox

With 14.69,

aNn X N sin ¢ cos 6

2 = , = sin¢ cos 0,
R e 9%
/\z,,,v),,lﬂz\ 0 -1 |: —Xz i| _ cos ¢ cos 6
= 2 2 2)3/2 | T ’
N ; , ax \/1 ] (x2 4+ y2 4 223/ R

22
JIN O /IN /N R
A 90 1 —y\ -y _ —%singsind _ sind
ax 1+ y2/x2\x2 ) x24y2 Rsinf¢  NRsing’
and therefore
vy ) 0y cos ¢ cos 6 vy sinf dv,
= sin¢ cos b _— — - .
ax oNn N 0 NRsing 06
Similarly,
% _ sinqﬁsin@aﬂ cosqﬁsineaﬂ ,00'59 8&’
ay on N d¢ Nsing 060
v, dv, sin¢ Jdv,
— =cosp— — ——,
0z N N 09

When we substitute for vy, vy, and v, from equations 14.73,

vy ad
81; = sinqbcoseﬁ(vm sing cos @ — vg sin@ + vy cos @ cos 0)
cos¢cosf 9 (v sin b cos 0 ing + $ cos6)
—— (Vg - v
5 o0 9t sin ¢ cos 9 sin $ COS @ cOs
00 singscos 8 — vy sin€ + v cos  cos6)
— — (gt sin ¢ cos & — vy sin Vg COS ¢ oS
Rsing 90 o ¢
in ¢ cos 0 sin eavm . 98v9+ " 93v¢
= sin in —— — sin —
sin ¢ cos 8| sin ¢ cos a0 S 3% cos ¢ cos 5%
n cos¢pcosb [ " gavm n $ cos 6 ) 081}9
———— | sin¢p cos —— + vg; cos P cos @ — sinf —
N ap 36

a
+ COS¢COS€8L(; ) sin(,bcos@)

sin 0 . 8Um . . . 81)9
— - sin ¢ cos@—— — vy sing sinf — sinf —
N sin ¢

00

d
— vgcosb + cosqbcos@% — v¢cos¢sin0),
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0

—2 = sin¢ sin @ — (vy; sin P sin O + vy cos O + Vg cos ¢ sin 0)

an

cos¢sinf o ) ] )
W—iﬁ(vm sin @ sinf + vg cos O + vy cos P sin0)

b S8 D i singsin® + vpcosd + vy cos ¢ sin)
— (Vs SIN Sin Vp COS Vs COS Sin
Rsing 96 0 ¢

in ¢ sin 0 sin @ si Qavm
= Sin Sin sin Sin
on

J

n 9 d Vg + (f) o 8U¢
COSU —— Cos@P s ——-—
oNn on

.. O0vy . dvg
sin ¢ sin @ —— + vg; cos @ sin O + cos @ —

cos ¢ sin 0
i ( 09 9

N
. 0vg .
+ cos¢sm9w — Vg sin @ sin 6

cos O

+ N sin ¢

d a
(singb sin@% ~+ vy sin ¢ cos 6 + cos@%

0
— Vg sinf + cosd)sin@% + v¢cos¢0050>,

i ad
Sl;f %(vm cos ¢ — vy sin @)

8v¢ sind) 31)5){ . . 3U¢
— ) = CoOSp—— — vy singp — singp—— — vy cos .
> 0 ( o o0 5 sin ¢ ¢ o0 ¢ COS @
When these are added together and simplified, the result is

dvg 2 1 dvg cot ¢ 1 dvg
— + —vp + —— Vo + — (-
aNn N N d¢ N Nsing 06

d
= cos ¢%(vm cos P — vy sing) —

avm

= cosqﬁ(eosqﬁﬁ — sin a9

divv =

(14.79a)

This can be expressed in a form resembling that for divergence in Cartesian coordinates,

ad ad ad
[%(9{2 sin ¢ vyy) + ﬁ(% sin ¢ v¢) + 8_9(%1)0)] (14.79b)

divy = ——
N2 sin ¢
Thus, to find the divergence of a vector function in spherical coordinates, we use 14.78 when its
Cartesian components vy, vy, and v, are known, and then substitute for x, y, and z in terms
of N, ¢, and 0, or we use 14.79 when its spherical components vy, Vg, and vy are known.

[ EXAMPLE 14.32

N
Find div v in spherical coordinates using 14.78 and 14.79 when v = (x2 + yz)i + zk.
SOLUTION  Using 14.78,

divy = 2x + 1 = 20 sin¢pcos 6 + 1.
Alternatively, since
vy = (x> 4+ y*)singpcosf + zcosp = R sin’® P cos@ + N cos @,
vy = (x? + y?) cospcost — zsing = R sin’ P cos ¢ cosO — R sin ¢ cos @,
vg = —(x* + yH) sinf = —R?sin’ P sin 6,
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equation 14.79a gives

2
divv = 20 sin® ¢ cos O + cos® ¢ + —(9%2 sin® ¢ cos 6 + N cos® @)

+ —(2%2 sin ¢ cos® ¢ cos — N2 sin® P cos O — N cos”> ¢ + N sin” @)

+ (—M? sin® ¢ cos 0)

N sin ¢
= 2 sin¢gpcosO + 1.

P N

The curl of a vector function v = vxi + vyj + vzlA( is

i j Kk

curl F = i i i =(%_%)i+(8vx 8UZ)J+(%_%)R
9 ay 0z ay 0z 0z 0x 0x 8y
Ve Uy U

(14.80)

It can be changed to spherical coordinates by replacing x, y, and z with R, ¢, and 6, and
transforming components according to equations 14.72. Alternatively, according to 14.72, the
spherical components of V X v are

0 d ad ad ad d
(VX vy = (ﬁ — ﬁ) sin ¢ cos 0 + (& — ﬁ) sin¢g sinf + (& — vx)cosqb,
y Z

d 0z a ox ox ay
d a 0 d 0 0
(V xv)y = (8_1; — %) cos ¢ cos 6 + ( 8vzx — 8_1:) cos¢sinf — <% — ;;C) sin ¢,
ad vy d ad
(Vxv)y=-— % _ %Y sin6 + D cosf.
ay 9z 0z ax

Using chain rules gives

ay 9z

(B e ) (00N 008, b0 00)

IR dy | 9 ay | 90 ay IR 9z | ap 9z | 90 oz

avh ., 0vg cos ¢ sin 0 dvy
= sin ¢ sin 6 cos¢ — sing + ——— | cos ¢— — vy sin ¢
an N 0¢
. ¢8U¢ ¢ n cos 6 ¢3v<n ¢8U¢
— sin¢p—— — vy cos — —singg—
ap ? Nsing \ 30

vy vy ad
_ cosgzb(sm(]ﬁsme—gﬁ + Cos<,2551n6’—gﬁ + cos@a—gi)

sin ¢
N

vy vy
(smr;‘) sm@w 4+ vyt cos @ sin @ + cos ¢ sin 0%

dvg
- 0 0—
Vg sin ¢ sin @ + cos o0 )
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0y av, 0V, ON n dv, ¢ n dv, 00 av, IN av, d¢ dv, 36
oN 0z d¢p 0z 00 0z

az ox oN dx 0¢ dx 00 dx
. dvg dvg . vy sing [ vy
= cos@| singpcosf@ —— — cos¢pcosf — — sinf— | — sin ¢ cos 0 ——
on on on R ¢
+ b cosb + cos cosf Y in cos 6 — sinf
Ugi cos ¢ cos cos ¢ cosd—— — vy sin @ cosf — sin —
" 09 7 09

. ¢ 9 ¢8vm . 8v¢,
sin @ coS COoS an Sin an

cos ¢ cos 6 " ovy o g Vg 8
- — — — s - — =
7 cos 30 9% sin sin 00 $ COS
sin O 0Vgp . 8U¢ )
+ msm¢(C°S¢ op ~ Sn® ae)’

vy vy . dvy ON n dvy 0¢ n dvy, 00 ovy, ON n vy, d¢ n ovy, 00
ox ay  \ 9N ox d¢ ox a0 ox oN dy d¢ dy 00 dy

= Sin¢C°SQ<SiH¢Sin9% + cos¢sin0£ + cosg%)

cos ¢ cos 6
; “’—(

.¢.08U§R+ sind + ¢.930¢
Sin SNy — U{COS Sin COS SIng —
ap Y

. ¢ ing + 681)9 sin 0 . ¢ X eavm + . ¢ 9
— Vg SINn 1n o - 1n mo— v mn
¢ S S cos 8¢> N sin ¢ S S 90 %" S cos

. 0vg dvg )
+ cos¢s1n9% ~+ vy cos @ cos O + 0089% — vy sin6

in g sin 8 ( sin ¢ 9805)t+ " 9304; . 9309
Sin sin Sin @ COoS 35}{ COS @ COS 85}{ sin af}t

in 6 0
— %(sinqﬁcos@ai(;t ~+ vy cos ¢ cos 6
+ cosoos 9022 in cosd — sin @22
cos ¢ cos@—— — vy sin g cosf — sin —-
op 7 ¢

cos 6 g eavm insin@ + " 98v¢
— SIN @ COS U —— — VUsy SIn Sin COSQ COSU ——
€ sin ¢ a0 30

, 0
- v¢cos¢sm6—sm98—9—vgcos9 .

These can be simplified to

1 dv 1 dv cot
(Vxvg = —‘—0 - ‘¢ve,
N d¢p Nsing 06 N

1 Jduy dvg 1
(VX V)g = —— - T~ Ve,
Nsing 90 oNn N
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1 duy vy 1

v - 1
(VXWo = =556 T am T '
Thus,
1 /9 19 ) 1 vy 9 o -
curlv = — v _ - &—l—vgcotqﬁ R+ : ﬂ—ﬂ——vg ¢
%\ 94  sing 90 Ysing 90 M N
vy 1 vy 1 A ’
— ot 0. 14.812
+ <am % op 5}%”"’) (14.81a)

This can be expressed in determinant form as is the case in Cartesian coordinates. Expanding
the following determinant gives

R SR(} N sin ¢é

1 9 9 9 1 Qv g\ .
_ = — — = — [ Nsingp— + Ncosprg —R— | R
N2sing | IR ¢ 96 N2 sin ¢ Rl 00

Uy qu) ERsind)ve
dvg ad A
+ (% — Sﬁsinqﬁy?; — sin(,bv@) gﬁqﬁ]
d vy \ A
+ (%aiv? +vp — a%) % sin ¢ O
1 31)9 1 8v¢ A
= —| = — ——— +cotopy | R
N\ d¢ sin¢g 06
1 31)5)} 8v9 1 ~
* (—mmw an ﬁ”(’>"’
8v¢ 1 avm 1 A
_— — —— 4 = 0.
+ (am % ag mv¢)
Hence, we may write that
R NRe Nsingd
1
curlv = 0 0 0 (14.81b)

N2sing | IN % 30
U .%U¢ N sin ¢U9

[ EXAMPLE 14.33

.

Find the spherical components of the curl of the vector function in Example 14.32 using 14.80
and 14.81b.

SOLUTION  Using 14.80,

i i Kk
| 9 3 2yk
curtv = ox dy 0z = TR

x2+y 0z

Equations 14.72 give the spherical components of this vector,

Ut
Vg

Vo

—2ycos¢p = —2N sin ¢ cos ¢ sin O,
2ysing = 20 sin’ ¢ sin 6,
0.
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Hence,
curlv = —2% sin ¢ cos @ sin @ % + 2N sin’ ¢ sin O ¢

= —2%singsinO(cosp K — sin P P).

Alternatively, using 14.81b and the spherical components of v calculated in Example 14.32,

S Ne 9N sin O
ad ] ]
curlv = m GEH 8¢ 89
Zsin® pcosf  NPsin®pcospcosd  —N3sin’® psin 6
+MN cos? ¢ —R2 sin ¢ cos ¢
= ——[(—3R3sin® p cos P sin O + R sin’ ¢ cos ¢ sin 0)h
N? sin ¢
+ (302 sin® ¢ sin @ — N2 sin’ ¢ sin 6) N
+ (3R sin” ¢ cos @ cos @ — 20 sin ¢ cos p — 3NR? sin” ¢ cos ¢ cos O
+ 2M cos ¢ sin @) N sin @ 9]
= 29 sin ¢ sin O (— cos ¢ R + sin ¢ (;S)
N

In Example 12.19 of Section 12.6 we used chain rules to find the Laplacian in polar coordinates.
Chain rules could also be used to find the Laplacian in spherical coordinates. It is much easier,
however, to use 14.77 and 14.79b:

s 4 D (gt ) o B (1Y
( ey )+a¢( ¢a¢)+89(sm¢aeﬂ

4) 1 9%V
sin —_
¢ 5)?2 sin? ¢ 962

ViV = V. (VV) =

1 ]
NRZsing | IR

10 ERZav Lo 1 (14.82)
TORZam N N2 sin ¢ I '

In Exercises 1-7 we develop results for cylindrical coordinates parallel
to those for spherical coordinates.

1. Show that unit tangent vectors to coordinate curves in cylindrical
coordinates have Cartesian components

f = cosfi-+ sinGj, 0 =

2. If v = v,F + v90 + v,k are cylindical components of a vector with
Cartesian components V = v,i + v,j + v.K, show that

r 0 k
U-V = U + Ugly + Uz, UXV=|u uy ugl
—sinfi+cosfj, k =Kk v, Vg U

3. Show that the scalar and vector products of vectors u = u,f +
u90 + uzk and V= v, T + v90 + vzk are

* 4. Show that cylindrical components of the gradient of a function

U, = vy cosf + vysind, vy = vy cosf — vy sinb, f(x,y,2) are

Vg = —U,sinf + v, cos 0, vy = v, sinf + vgcosH, 19 9
' ! ! ' grad f = a—fr—f— 7£0 f

v, = Vg, Uz = Vg. ’

Copyright © 2008 Pearson Education Canada



30  Chapter 14 SECTIONS 14.11 and 14.12

< 5. Show that the divergence of a vector function with cylindrical com-
ponents V = v, + vgf + v, K is

vy av,
36 az |

1[0
divv = — |:(rv,) + — +r
r|or

6. Show that the curl of a vector function with cylindrical components
vV =uTF + v90 + v K is

Y I N

1|2 d 0
culv = - | — — _—
r|ior 060 0z

v, Trvg v

< 7. Use Exercises 4 and 5 to develop the Laplacian in cylindrical coor-
dinates,
% 19V 1 9%V %

ViV =— +-
r2+r8r

2900 a2

8. Repeat Example 14.29 forj and k.
9. Repeat Example 14.29 for iand j, and cylindrical coordinates.

10. Find the scalar and vector products of the vectors u = xi + yj
+ zﬁ andv = (x> 4 yz)lA( in cylindrical coordinates by (a) calculating
the products in Cartesian coordinates and transforming to cylindrical
coordinates and (b) transforming u and Vv to cylindrical coordinates
and using Exercise 3.

11. Repeat Example 14.30 in cylindrical coordinates.

12. Repeat Exercise 10 for spherical coordinates.

In Exercises 13-16 find cylindrical and spherical components of the
vector (see Exercise 2).
13. F=2yi — 3xj + xzk 14. F = 3yi —27j + 2xk

15. F= (2 + 2+ 29)i— zk 16. F = xi+ (2 + y)j + xyk

In Exercises 17-20 find components of V f in cylindrical and spherical
coordinates (see Exercise 4 for cylindrical coordinates).

17. f(x,y,20) =x"+y"+2*
18’ .f(x9y?z)=x2+x.y+z
< 19. f(x,y,2) =x>+y*+xyz

Z
S @y =t
X

+y

In Exercises 21-24 find the divergence of the vector function in cylin-
drical and spherical coordinates. Do so by (a) using 14.78 and then

transforming coordinates and (b) finding cylindrical and spherical com-
ponents of v, and then using Exercise 5 and equation 14.79b.

< 2L v= (24 y)E+))
« 22, v=xi+yj+zk
< 23. v=x%+ 4+ 22k

£ 24, V= /x24+y2+ 2(xi+ yj + zk)

In Exercises 25-26 find the curl of the vector function in cylindrical and
spherical coordinates. Do so by (a) using 14.80 and then transforming
coordinates and (b) finding cylindrical and spherical components of v,
and then using Exercise 6 and equation 14.81b.

* 25, v= xyi + yzj + leA(

<26 v=(2+y +2)(0+j+k)

« 27. When v = Uxi + vyj is the fluid velocity in two-dimensional,

steady-state, incompressible flow, the equation of continuity demands
that
vy vy

ax ady

=0

(see equation 14.61 with p constant). Show that if v = v, F + Ugé are
polar components of v, then the equation of continuity takes the form

ov, 1dvy v,
-— 4+~ =0
ar r a6 + r

« 28. The velocity and acceleration of a particle with displacement r =

x(t)i + y(t)j + z(t)lA( (¢ being time) are
v=r=xi+jj+z:k a=f=v=3i+yj+:k,

«

where “-” indicates differentiation with respect to . Show that velocity
and acceleration in cylindrical coordinates are

v=it+r00+zk, a=F—ro)f+ b +2i0)0 + k.
29. The velocity and acceleration of a particle with displacement r =
x(i+ y(t)j + z(t)k (¢ being time) are

v=r=xi+jj+:k a=¢=v=3i+5yj+ ik,

@

where “-” indicates differentiation with respect to #. Show that velocity
and acceleration in spherical coordinates are

v = RR + Noe + N sin poo,
a = — NP> — RsinpdH% + 2R + R
— 9 sin ¢ cos pOH)P + (29 sin

+ 2910 cos ¢ + N sin pH)0.
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In Exercises 30-34 we develop results for an arbitrary set of orthogonal
curvilinear coordinates analogous to those for spherical and cylindri-
cal coordinates. Suppose that (¢, v, w) are curvilinear coordinates in
some region R of space related to Cartesian coordinates by equations

x = x(u,v, w), u=ux,y,z),
y =yu,v,w), = v =v(x,y,2),
z = z(u, v, w), w = wx,y,2).

Ifr = xi+ yj + 2k, let

. ar/ou 1 or
u = = — ),

|or/du| hy, ou
. ar/ov 1 or
vV = = ——,

|0r/dv| hy, v
. ar/ow 1 or
W = =

lor/dw|  hy dw’

be unit tangent vectors to the coordinate curves. These vectors are mu-
tually perpendicular when the curvilinear coordinates are orthogonal.

30. Show that curvilinear components q = ¢, + ¢,V + g, W of a

vector function with Cartesian components q = g.i + ¢,j + g K are
related by

1 ax n dy + 9z
qu = h, qx 7 9 qdy u qdz 5 u
1 dax n ay tq 0z
qv = h, Q)ca qy v 31)

1 0x dy a9z
Qw = qx + qy + qz £
w Jw

hw a ow

qu 0x Gy 0x qu 0x
ge= WEZ G A0 E g e 2

h,ou hy,dv hy,ow

14.12  Vector Analysis in Orthogonal Coordinates 31

_ u Ay | qudy | qu dy
2y h, ou hy, v hy 0w’
_ 0T @37 qw 92
= ou T hy v hy ow

* 31. Show that curvilinear components of the gradient of a function
f(x,y,z) are

19 1 af . 1 af .
gradf———f f f.

h, ou +h8v h8w

32. The divergence of a vector function with curvilinear components
q=qui+ g,V +quWis

divq =

9 ] 9
hvhw u huhw v huhv w .
huhvhw[au( q)+av( q)+aw( q )}

Show that this reduces to equation 14.79b in spherical coordinates.

33. The curl of a vector function with curvilinear components q =
40+ quV + quW is

h,aa  hyV  h,W
d ad d

curlq = — _ _
huhuhw 3l/t 31) 3w

huqu  hoqy  huqu

Show that this reduces to equation 14.81b in spherical coordinates.

# 34. Use Exercises 31 and 32 to show that the Laplacian in (u, v, w)

coordinates is
1 0 ([ hyhy, oV i 0 (hyhy, oV
hyhyhy | Ou h, ou ov h, O0v

n o (hyh, oV
dw \ hy, ow)/ |

ViV =
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