
14CHAPTER

Analyzing Linear
Relationships, Two
or More Variables

INTRODUCTION

In the previous chapter, we introduced Kate Cameron, the owner of
Woodbon, a company that produces high-quality wooden furniture.
Kate wanted to understand why sales have grown steadily over recent
years, with an eye to planning for the future. After carefully checking
required conditions for the analysis, Kate created a mathematical
model of the relationship between Woodbon’s sales and advertising.
While there did seem to be a significant relationship between the two
variables, the variability in the predictions meant that the model was
not that useful for predicting sales.

The discussion in the previous chapter was a useful introduction
to analyzing relationships between two variables. However, a more
realistic process would begin with Kate analyzing the relationship
between Woodbon’s sales and a number of possible explanatory vari-
ables. Some that have already been mentioned are housing starts and
mortgage rates. Kate would likely examine a number of possible
explanatory variables, with the aim of developing a model that is
economical (that is, has reasonable data requirements) and works
well (that is, makes useful predictions).

LEARNING OBJECTIVES

After mastering the material in this chapter, you will be
able to:

Estimate the linear relationship between a
quantitative response variable and one or more
explanatory variables.

Check the conditions required for use of the
regression model in hypothesis testing and
prediction.

Assess the regression relationship, using appro-
priate hypothesis tests and a coefficient of
determination.

Make predictions using the regression relation-
ship.

Understand the considerations involved in
choosing the “best” regression model, and the
challenges presented by multicollinearity.

Use indicator variables to model qualitative
explanatory variables.
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Section 14.1 builds on the discussion in Chapter 13, to extend the mathematical
model to include more than one explanatory variable. A reasonable way to start is
with some careful thinking about what other factors could most reasonably be
expected to affect Woodbon’s sales. For more complex models, it is crucial to have
computer software to do the calculations, and you will see how to use Excel to build
the mathematical model.

Section 14.2 extends the theoretical model from the last chapter to include more
explanatory variables, revisiting the discussion about least-squares models. As before,
we will use Excel to check the required conditions for the regression model.

Section 14.3 introduces hypothesis tests about the significance of the overall model,
and the individual explanatory variables. We will also discuss a measure of the strength
of the relationship between the explanatory variables and the response variables, the
adjusted coefficient of determination (adjusted R2).

Section 14.4 describes an Excel add-in that you can use to make predictions of aver-
age and individual response variables, given specific values of the explanatory variables
in the model.

In Section 14.5, we will discuss an approach to selecting the best explanatory vari-
ables for our regression model. Kate will want to develop a model of sales that makes
good predictions, but the simplest model that does a good job will be preferred.
Selecting the appropriate explanatory variables is an art as well as a science. An Excel
add-in that produces a summary of all possible models will be introduced.

In Section 14.5, we will look at ways to assess and deal with a new problem that may
arise when there is more than one explanatory variable. This problem is usually referred
to as “multicollinearity,” and it occurs when one of the explanatory variables is related to
one or more of the other explanatory variables.

It is possible to include qualitative explanatory variables in regression models, and
Section 14.6 illustrates the use of indicator variables to accomplish this.

Section 14.7 refers briefly to more advanced models, so that you can get a sense of
the wide variety of mathematical modelling possibilities.
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DETERMINING THE RELATIONSHIP—
MULTIPLE LINEAR REGRESSION

In Chapter 13, Kate Cameron examined the relationship between advertising spending
and sales. This simple linear regression model served as an introduction to the techniques
of linear regression modelling.

It seems reasonable to think that there is a cause-and-effect relationship between
advertising and sales. Kate is also wondering if sales are significantly affected by other
explanatory variables. In particular, she is wondering about three others:

• Mortgage rates may affect a household’s ability to buy furniture. Kate expects the
relationship to be negative, that is, when mortgage rates are higher, she would
expect a household to have less income available to buy wooden furniture.

14.1
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• Housing starts may also be related to sales. When more houses are being built, more
households might buy Woodbon’s furniture. There is a fairly long lead time for a
customer to take delivery of Woodbon’s furniture, so housing starts may be a useful
explanatory variable.

• Kate has been exploring Statistics Canada data, and has discovered a series of “leading
indicators.” In particular, she has identified a leading indicator for retail trade in
furniture and appliances. Although the indicator is for Canada as a whole, Kate is
wondering if it can give her some insight into Woodbon’s sales.

Creating Graphs to Examine the Relationships Between
the Response Variable and the Explanatory Variables
Kate begins by collecting data for the three additional (potential) explanatory variables.
She finds Statistics Canada data for housing starts in New Brunswick1 (Woodbon is
located in Saint John, and delivers throughout the province). The data are available on a
quarterly basis. Kate decides to add up the quarterly numbers so she can relate annual
housing starts to annual sales.

Statistics Canada provides data on a variety of mortgage interest rates, and Kate
decides to work with mortgage rates for five-year conventional mortgages at chartered
banks. Statistics Canada provides data about monthly mortgage rates2 (based on the last
Wednesday of the month). Kate could simply use the mortgage rate for one month of
the year to represent mortgage rates for that year (e.g., the January or June mortgage
rates). In general, it is simplest to use the available data in raw form to build models. In
this case, Kate decides to compute a simple average of the monthly rates to create a data
series of annual average mortgage rates.

An excerpt of the data set, including data on sales and advertising, is shown on the next
page in Exhibit 14.1. The complete data set is available in an Excel file called SEC14-2.

Initially, it can be useful to create scatter diagrams to explore the relationship between
sales and each one of the potential explanatory variables. The four scatter diagrams are
shown in Exhibit 14.2.

We have already established (in Chapter 13) that there is a positive association between
Woodbon’s advertising expenditure and sales. From the scatter diagrams we can see that
there is a negative relationship between Woodbon sales and mortgage interest rates, as
expected. There appears to be a positive relationship between Woodbon sales and the
Canada-wide leading indicator for retail trade in furniture and appliances, although it may
not be linear. There is a somewhat curved appearance to the plot, which flattens out for
higher levels of the leading indicator.3 There does not appear to be much of a relationship
between Woodbon sales and housing starts in New Brunswick. However, this does not nec-
essarily mean that housing starts will not be useful in the regression model. This variable, in
conjunction with others, could still potentially improve the model’s predictions.
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SEC14-2

1 Statistics Canada, “CMHC, Housing Starts, under Construction and Completions, All Areas; New
Brunswick; Housing Starts; Total Units; Unadjusted (units) [J15005],” CANSIM Table 027-0008,
www.statcan.gc.ca, accessed October 13, 2008.
2 Statistics Canada, “Financial Market Statistics, Last Wednesday Unless Otherwise Stated, Monthly
(percent)(1), Bank of Canada – 7502 Rates (Percent) Chartered Bank – Conventional Mortgage:
5 year,” CANSIM Table 176-0043, www.statcan.gc.ca, accessed October 13, 2008.
3 It is possible to model non-linear relationships, but this is a more advanced topic.
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EXHIBIT 14.1
Woodbon Sales and Explanatory Variable Data

Woodbon Mortgage Rates, Housing Starts, Advertising Expenditure,

Leading Indicator, and Sales, 1980–2007

Year

Mortgage

Rates

Housing Starts 

(New

Brunswick)

Advertising

Expenditure

Leading 

Indicator 

(Retail Trade,

Furniture and

Appliances,

Canada) Sales

1980 14.52083 2,646 $ 500 599 $ 26,345

1981 18.37500 2,188 $ 695 639 $ 31,987

1982 18.04167 1,680 $ 765 577 $ 21,334
...

...
...

...
...

...

2004 6.23333 3,947 $2,500 2,014 $101,760

2005 5.99167 3,959 $2,700 2,195 $ 95,400

2006 6.66250 4,085 $3,500 2,515 $115,320

2007 7.07083 4,242 $3,200 2,648 $108,550

EXHIBIT 14.2
Scatter Diagrams for Woodbon Sales and Explanatory Variable Data
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Determining the Relationship Between the Response Variable
and the Explanatory Variables
We will begin our analysis by adding all of the new explanatory variables to create a new
multiple regression model. The model is built using Excel’s Data Analysis Regression
tool, as illustrated in Chapter 13. The only difference is that more than one explanatory
variable will be selected for Input X Range:. It is highly recommended that you include
labels when selecting the data in Excel, because it will make the output much easier to
read. Exhibit 14.3 illustrates.
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EXHIBIT 14.3
Excel Regression Dialogue Box

Select labels as 
well as data for 

x and y
values.

Select all of the explanatory
variable data (in adjacent

columns) for multiple
regression.

The Woodbon output for the regression model is shown on the next page in Exhibit 14.4.
At first glance, this model looks promising. The R2 value is 0.955. The mathematical

relationship from the regression model is as follows:

Woodbon annual sales � $89,159.92 � $3,814.57 (mortgage rate) � $6.40 (housing 
starts) � $14.71 (advertising expenditure) � $10.44 
(leading indicator)

How do we interpret this mathematical model?

1. The intercept $89,159.92 is an estimate of average Woodbon sales when all of the
explanatory variables have a value of zero. This number does not have a practical
interpretation, because it is highly unlikely, for example, that mortgage rates would
ever be zero. Additionally, a regression model should never be applied for values of
the explanatory variables that are outside of the ranges in the data set used to build
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the model, and none of the variable values in the data set for Woodbon was even
close to zero.

2. The mortgage rate coefficient can be interpreted as follows. If all values of the other
variables are fixed at specific levels, there would be a decrease in Woodbon’s average
sales by $3,814.57 for each 1% increase in the conventional five-year mortgage rates
at the chartered banks. It seems reasonable that higher mortgage rates would leave
less money available to households for spending on furniture, and so the negative
relationship makes sense.

3. The housing starts coefficient can be interpreted as follows. If all values of the other
explanatory variables are fixed at specific levels, there would be a decrease in
Woodbon’s average sales by $6.40 for each additional housing start in New
Brunswick. We would have expected that furniture spending would increase, not
decrease, with additional housing starts. However, it is important to recognize that
this coefficient applies only when all of the other explanatory variables are included
in the model. There may be some interaction between housing starts and one or
more of the other explanatory variables that results in a coefficient of the “wrong”
sign. Remember, there did not appear to be a strong relationship between
Woodbon’s sales and housing starts in the first place. The fact that the sign on the
coefficient is “wrong” increases our suspicion that this “explanatory” variable may
not actually explain very much about Woodbon’s sales.

4. The advertising expenditure coefficient indicates that each additional dollar in
advertising spending results in an increase of $14.71 in Woodbon’s annual sales,
when all other variables held the same. Note that this coefficient is different from
the $35.17 value in the regression model based on advertising expenditure alone
(see Chapter 13 page 484).
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EXHIBIT 14.4
Excel Regression Output for Woodbon Sales and Explanatory Variable Data 
(All Variables Included)
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DEVELOP YOUR SKILLS 14.1
The Develop Your Skills exercises in this chapter frequently
refer to a data set called “Salaries.”

1. For the Salaries data set, create scatter diagrams show-
ing the relationship between each possible explanatory
variable and salaries. Are there any obvious problems?
Are there some variables that seem particularly strong
as candidates for explanatory variables?

2. For the Salaries data set, create a multiple regression
model that includes all the possible explanatory vari-
ables. Interpret this model. Are there any obvious
difficulties with this model?

3. Create a scatter diagram showing the relationship
between age and years of experience. Does it seem
sensible to include both of these explanatory variables
in the model?

4. Create a multiple regression model for the Salaries data
set that includes years of postsecondary education and
age as explanatory variables. Interpret the model.

5. Create a multiple regression model for the Salaries data
set that includes years of postsecondary education and
years of experience as explanatory variables. Interpret
the model.

It appears that the “all-in” model has some difficulties. Normally, we might stop and
rethink at this point. However, we will continue analyzing this model, because it will
give us the opportunity to discuss relationships which both do and do not meet the
required conditions of the theoretical linear regression model.

SALARIES

CHECKING THE REQUIRED CONDITIONS
The Theoretical Model
In Chapter 13, we described how the least-squares line was created, as a best fit between
the explanatory and response variables. The theoretical relationship was

y � b0 � b1x � �

This indicated that the y-value could be predicted from x. The � term reminds us
that we do not expect the prediction to be perfect. There may be some unexplained or
random variation in the y-values that cannot be predicted from the x-values.

The corresponding notation for the regression relationship based on sample data is

The coefficients b0 and b1 were arrived at by minimizing the sum of the squared
residuals for the data set, that is

Now we extend the model so that it includes more explanatory variables:

y � b0 � b1x1 � b2x2 � ��� � bkxk � �

The corresponding notation for the relationship based on sample data is

yN = b0 + b1x1 + b2x2 +
Á

+ bkxk

SSE = a 1yi - yNi2
2

yN = b0 + b1x

14.2
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Again, the coefficients are estimated by minimizing the sum of squared residuals,
for all of the data points in the data set. This requires the use of advanced algebra, but
the idea is the same as in Chapter 13. Essentially, this creates a multiple regression model
where the predicted values are simultaneously as close as possible to the observed values.

When the model has one response variable and one explanatory variable, as in
Chapter 13, we can think of the relationship as a line, because we are operating in two
dimensions (x and y). When we have one response variable and k explanatory variables,
we are operating in k�1 dimensions. With two explanatory variables, we can imagine a
plane as the regression surface. With more than two explanatory variables, there is no
way to picture the regression relationship.

Examining the Residuals
In Chapter 13, we saw that analysis of the residuals was required to check
whether the sample data appear to conform to the requirements of the least-squares
regression model. As before, we can legitimately make predictions with the model, or
perform hypothesis tests about the relationship between the y- and x-variables, only if
these requirements are met.

1yi - yNi2
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Requirements for Predictions or Hypothesis Tests About the Multiple Regression
Relationship

1. For any specific combination of the x-values, there are many possible values of
y and the residual (or “error term”) �. The distribution of these �-values must
be normal for any specific combination of x-values. This means that the actual
y-values will be normally distributed around the predicted y-values from the
regression relationship, for every specific combination of x-values.

2. These normal distributions of �-values must have a mean of zero. The actual
y-values will have expected values, or means, that are equal to the predicted 
y-values from the regression relationship.

3. The standard deviation of the �-values, which we refer to as s�, is the same for
every combination of x-values. The normal distributions of actual y-values
around the predicted y-values from the regression relationship will have the
same variability for every specific combination of x-values.

4. The �-values for different combinations of the x-values are not related to
each other. The value of the error term � is statistically independent of any
other value of �.

As in Chapter 13, we create a number of residual plots to check these requirements.
If they appear to be met in the sample data, we will assume they are met in the popula-
tion. As usual, Excel is a great help in creating the required graphs. As before, in the
Regression dialogue box, you should tick Residuals, Standardized Residuals, and
Residual Plots. As in Chapter 13, you should create a histogram of the residuals, and
you should plot the residuals against time if you have time-series data.

Variation in the Residuals Is Constant A plot of the residuals against the
predicted values from the model can give us an indication of whether the variability of
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The requirement is that the variability of the error term is constant, so a residual
plot with constant variability (a horizontal band, centred on zero vertically) is ideal.
This residual plot does not show any particular pattern, and appears as a horizontal
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EXHIBIT 14.5
Excerpt of Excel Regression Output for Woodbon, Showing Residuals

the error term is constant. Such a plot can be created from the information created by
Excel in the Residual Output, an excerpt of which is shown below in Exhibit 14.5 (note
that some of the rows of data have been hidden in the worksheet).

EXHIBIT 14.6
Plot of Residuals Against Predicted Sales, Woodbon

The plot of residuals against predicted values is shown below in Exhibit 14.6. In Excel
2007, it is quite easy to produce this scatter diagram. Simply highlight the two adjacent
columns (Predicted Sales and Residuals, in this case), and Insert a Scatter diagram.
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band. There is one residual that is unusually high (it is circled on the plot). This point
corresponds to the data point for 1991.

It can also be helpful to plot the residuals against each individual x-variable, particu-
larly if there appears to be a problem with the plot of the residuals against the predicted
values. The additional plots can indicate which explanatory variables might be the source
of any problem.

When Residual Plots is ticked as an option in Excel’s Data Analysis tool for
Regression, graphs are automatically created to show residuals against every x-variable
in the model. The graphs for the Woodbon model are shown in Exhibit 14.7 below. Note
that the graphs have been resized for visibility.
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EXHIBIT 14.7
Residual Plots for Woodbon Multiple Regression Model

The mortgage rates residual plot has the desired horizontal band appearance,
although there is one point (circled on the plot) where a residual seems unusually high.
This is the data point for 1991, the same point that stood out in Exhibit 14.6.

The housing starts residual plot exhibits fairly constant variability in the residuals,
although again there is one point (circled) that gives an unusually high residual. Again,
this is the data point from 1991.
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The advertising expenditure residual plot has something of a horizontal band appear-
ance, although there does not seem to be as much variability in the residuals when the adver-
tising expenditure is higher. Again, the data point for 1991 shows an unusually high residual.

The leading indicator residual plot gives the greatest cause for concern. This plot
shows reduced variability in the error term for higher values of the leading indicator, and
the pattern is more pronounced than for the advertising expenditure residual plot,
although it is also affected by the 1991 data point. Remember that the scatter plot of sales
against the leading indicator looked non-linear. The residual plot is consistent with the
curved scatter diagram that we saw earlier. Since we are trying to build a linear multiple
regression model, we may not be able to use this variable in its present form.

Independence of Error Terms Plotting the residuals in the time order in which
the data occurred allows us to check if the error terms are related over time. The
Woodbon data set was arranged by year, so the residuals are also arranged by year.

A plot of the residuals over time is shown in Exhibit 14.8 below.
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EXHIBIT 14.8
Plot of Residuals Over Time, Woodbon Model

There does not appear to be any particular pattern in the residuals over time, and so
it is reasonable to conclude that the residuals are independent over time.

Normality of Residuals A histogram is created for the residuals, to check for normality.
The histogram for the initial Woodbon model is shown on the next page in Exhibit 14.9.

The histogram appears to be approximately normal, although it is somewhat
skewed to the right. As well, the histogram appears to be centred approximately around
zero, which is desirable.

Outliers and Influential Observations Outliers, that is, observations that are far
from other observations, should always be investigated. Such points may be the result of
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an error in observing or recording the data. If that is the case, and they are not corrected
or removed, the result will be a model that is less correct than it could be. As before, a
general rule is to investigate any observation with a standardized residual that is ≥ �2 or
≤ �2. If you examine the Residual Output for the Woodbon model (see Exhibit 14.5 on
page 533), you will see that there is one point that would be identified as an outlier, that
is, observation 12. It is no surprise that data point 12 is the observation for 1991, given
how often it has shown up as an unusual point in the residual plots. This data point is
accurately recorded. There is no obvious reason why it does not belong in the data set.
Therefore, we will not discard it.

An influential observation is one that has an extreme effect on the regression model.
In the simple linear regression model discussed in Chapter 13, we could use scatter plots to
identify such values. Influential observations are more difficult to locate in the multiple
regression model, because the influence might come from just one x-variable, or a combi-
nation of them. There are several techniques available to help identify influential observa-
tions, and they can be found in more advanced texts. If you suspect that an observation is
having an undue influence on the regression model, one way to check is to recalculate the
model without the suspect observation. If the regression coefficients change significantly
(a judgment call), then the observation is influential.

What If the Required Conditions Are Not Met? The hypothesis tests and confi-
dence intervals that will be described in Sections 14.3 and 14.5 are valid only if the data
appear to meet the requirements for the linear regression model. If they do not, further
work must be done before hypothesis tests are done or confidence intervals are calculated.

There exist more advanced techniques that could be used to solve some of the prob-
lems that arise. For example, it may be possible to transform the data by applying some
mathematical function (such as a logarithm or square root) to the original data, and work
with the new measurements. It may also be possible to build a useful model without includ-
ing the variables that are responsible for the conditions not being met. It may be necessary
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EXHIBIT 14.9
Histogram of Residuals for Woodbon Multiple Regression Model
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to start over, to try to find explanatory variables that meet the requirements. It may also be
useful to proceed, if the violation of the required conditions is not too pronounced. If the
resulting model provides useful predictions, it may be the best we can do.

Before we proceed with our regression analysis, we will remove the leading
indicator as an explanatory variable, as it does not meet the requirements for linear
regression in its present form. In particular, the variability in the residuals is not con-
stant. Especially when we are just beginning our analysis of a model, we should not
necessarily discard explanatory variables that do not meet the requirements of a
linear regression model, especially when they seem to be reasonable choices. As men-
tioned above, we may be able to transform the leading indicator data so that the
model does meet the requirements for linear regression. However, the leading indica-
tor data also presents other difficulties (see Section 14.5), so we will drop it now to
streamline the discussion. As we will see later, choosing the best explanatory variables
for any model is an art.

Once we use Excel to create a new regression model, we will see that the model better
meets the required conditions for linear regression. Example 14.2 illustrates.
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Checking conditions for linear 
multiple regression

Use Excel to re-specify the multiple regression relationship between Woodbon sales
and mortgage rates, housing starts, and advertising expenditure. Check to see that the
new model meets the required conditions for hypothesis tests and confidence intervals.

The regression output for the new model is shown in Exhibit 14.10 below.

EXAMPLE 14.2

EXHIBIT 14.10
Regression Output for Woodbon Model, with Mortgage Rates, Housing Starts, and Advertising
Expenditure as Explanatory Variables
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From the output, we can see that the regression relationship has become
(approximately):

Woodbon annual sales � $80,640.57 � $3,521.91 (mortgage rate) 
� $5.48 (housing starts) � $23.41 (advertising expenditure)

The various residual plots for the revised model all appear to conform to the required
conditions. Exhibit 14.11 shows the revised predicted sales residual plot, which appears
to have the desirable horizontal band of points.
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EXHIBIT 14.11
Predicted Sales Residual Plot for Woodbon Model, with Mortgage Rates, Housing Starts,
and Advertising Expenditure as Explanatory Variables

As well, none of the residual plots for the three explanatory variables give an indication
of violation of the required conditions. Exhibit 14.12 opposite shows these residual plots.

The plot of the residuals over time does not exhibit any particular pattern, so we
can conclude that the residuals are independent over time. Exhibit 14.13 illustrates.

Finally, the histogram of residuals for the new Woodbon model appears fairly
normal, although there is some right-skewness. Exhibit 14.14 on page 540 illustrates.

A check of the standardized residuals reveals one data point that could be classified
as an outlier. This is the data point that corresponds to 1991 (notice that this point also
attracted our attention when we examined the residual plots for the original model).
Since the data are correct, we will leave the point in the data set. It appears that 1991 was
not a typical year for Woodbon.
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EXHIBIT 14.12
Residual Plots for Woodbon Multiple Regression Model (Mortgage Rates, Housing Starts, Advertising Expenditure as Explanatory Variables)

EXHIBIT 14.13
Plot of Residuals Over Time, Woodbon Model (Mortgage Rates, Housing Starts, Advertising Expenditure as Explanatory Variables)
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EXHIBIT 14.14
Histogram of Residuals for Woodbon Model (Mortgage Rates, Housing Starts, Advertising
Expenditure as Explanatory Variables)

The new Woodbon model appears to meet all of the required conditions for the lin-
ear regression model. However, it still does not meet the test of common sense, in that
the coefficient for housing starts is negative when we would expect it to be positive. We
will say more about this difficulty in Section 14.5, when we discuss criteria for selecting
explanatory variables.

G U I D E  T O  T E C H N I Q U E

Checking Requirements for the Linear Multiple
Regression Model
When:

• before performing hypothesis tests or using the regression relationship to create con-
fidence or prediction intervals

• using sample data to assess whether the relationship conforms to requirements

Steps:
1. Produce scatter diagrams for the relationship between each explanatory variable and the

response variable. Check to see that each relationship appears linear (no pronounced
curvature).

2. Use Excel’s Regression tool to produce the Residuals, Standardized Residuals,
and Residual Plots.
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3. Create a plot of the residuals versus the predicted y-values. The residuals should be
randomly distributed around zero, with the same variability throughout.

4. Examine the plots of residuals versus each explanatory variable. Again, the residuals
should be randomly distributed around zero, with the same variability (a random
horizontal band appearance is desirable).

5. Check time-series data by plotting the residuals in time order. There should be no dis-
cernible pattern to the plot.

6. Create a histogram of the residuals. This should be approximately normal, and centred
on zero.

7. Check for outliers and influential observations. Carefully check any data point with a
standardized residual ≥ �2 or ≤ �2.

Note: If these investigations indicate significant problems, you should not proceed with a
hypothesis test of the significance of the model, and you should not create confidence
intervals or prediction intervals with the model in its current form.

DEVELOP YOUR SKILLS 14.2
The Develop Your Skills exercises in this chapter frequently
refer to a data set called “Salaries.”

6. Examine the residual plots produced by Excel for the
Salaries multiple regression model that you built for
Develop Your Skills 14.1, Exercise 2, which included all
possible explanatory variables. Are these residual plots
consistent with the required conditions? Create a plot
of the residuals versus predicted salaries. Does this plot
meet the required conditions?

7. Examine the residual plots produced by Excel for the
Salaries multiple regression model that you built for
Develop Your Skills 14.2, Exercise 4, which included years
of postsecondary education and age as explanatory vari-
ables. Are these residual plots consistent with the required
conditions? Create a plot of the residuals versus predicted
salaries. Does this plot meet the required conditions?

8. Examine the residual plots produced by Excel for the
Salaries multiple regression model that you built for
Develop Your Skills 14.2, Exercise 5, which included
years of postsecondary education and years of experi-
ence as explanatory variables. Are these residual plots
consistent with the required conditions? Create a plot
of the residuals versus predicted salaries. Does this plot
meet the required conditions?

9. Create histograms of the residuals for the models dis-
cussed in Exercises 6, 7, and 8 above. Do these histograms
appear to be at least approximately normal?

10. Check the Excel output for the models created in
Exercises 6, 7, and 8 above for outliers. If you had access
to the original records for this data set, what would
you do?

SALARIES

HOW GOOD IS THE REGRESSION?
Because the new Woodbon model appears to meet the required conditions, we can now
conduct hypothesis tests about the overall model, and about the individual explanatory
variables. We begin by testing whether the regression model is significant. Given this
sample data set, is there evidence that there is a population regression relationship
between sales and at least one of the explanatory variables?

14.3
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Is the Regression Model Significant?—The F-Test
In the discussion of simple linear regression (Chapter 13), we performed a test of
hypothesis about the slope of the regression line.

In multiple regression, we test the model as a whole.

H0: b1 � b2 � � � � � bk � 0

H1: At least one of the bi’s is not zero.

If the null hypothesis is true, then the y-variable is not related to any of the x-variables.
If the alternative hypothesis is true, then the y-variable is related to at least one of the 
x-variables. As in Chapter 13, we hope to reject the null hypothesis, so that we can con-
clude there is a significant relationship between the response variable and at least one of
the explanatory variables.

We conduct the hypothesis test by examining how much of the variation in the 
y-variable is explained by the regression relationship. Remember from Chapter 13
that the total variation in the y-values can be broken down into two parts: the vari-
ation that is explained by the regression relationship, and the variation that is left
unexplained.

It is usual to describe this relationship as follows:

SST � SSR � SSE

The total sum of squares (SST) is equal to the sum of squares explained by the
regression (SSR) plus the residual (or error) sum of squares (SSE).

When the response variable (y) is related to the explanatory variables, then SSR
will be relatively large, and SSE will be relatively small. Before we can compare
SSR and SSE, we must adjust them so they are directly comparable. This is accom-
plished by dividing each by its degrees of freedom to calculate the associated mean
square value.4

The degrees of freedom for the error sum of squares are n – (k � 1), because we
estimate k coefficients plus an intercept from n data points. The degrees of freedom
for the total variation are (n – 1). This leaves k degrees of freedom for the regression
sum of squares.

The test statistic is the ratio of the mean squares, and is an F statistic. The F distri-
bution is described on pages 412–419 in Chapter 11.

F =  

SSR

k

SSE

n - 1k + 12

 =  
MSR

MSE

©(y - yq)2
= ©(yN - yq)2

+ ©(y - yN)2
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4 If this seems familiar, it should. We made the same adjustment to compare mean squares in Chapter 11.
See page 411.
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When the null hypothesis is true, and the response variable is not related to any of
the explanatory variables, the mean square for the regression (MSR) will not be signifi-
cantly larger than the mean square for error (MSE), and the F statistic will be relatively
small. However, when the response variable is related to at least one of the explanatory
variables, the MSR will be significantly larger than the MSE, and the F statistic will be
relatively large. The question is, how large does the F statistic have to be to provide
evidence of a significant relationship?

Of course, the answer depends on sampling variability. As usual, we have to refer
to the sampling distribution of the F statistic to decide whether any specific F statistic
is unusual enough for us to reject the null hypothesis. The sampling distribution of
the F statistic depends on the number of data points and the number of explanatory
variables.
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The Sampling Distribution of in Linear Multiple Regression Models

The sampling distribution of follows the F distribution, with (k, n – (k � 1))
degrees of freedom, where n is the number of observed data points and k is the
number of explanatory variables in the model.

MSR
MSE

MSR
MSE

Fortunately, the Excel output not only calculates the F statistic for the hypothesis test of
the regression model, it also calculates the associated p-value.

Hypothesis test of significance
of regression model

Complete the hypothesis test for the significance of the Woodbon model based
on mortgage rates, housing starts, and advertising expenditure. Use a 5% level of
significance.

H0: b1 � b2 � � � � � bk � 0

H1: At least one of the bi’s is not zero.

� � 0.05

The Excel output of the regression model is reproduced on the next page in
Exhibit 14.15, for ease of reference.

From the output, we see that F � 153.9 and the p-value is 0.000000000000000836.
Since the p-value is less than the level of significance, we reject H0. There is strong evidence
to infer that there is a significant relationship between Woodbon sales and at least one of
the explanatory variables. As always, we remember that a significant relationship is not
necessarily a cause-and-effect relationship. Some other factor may be the cause of associated
changes in sales and the explanatory variables.

EXAMPLE 14.3A
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Are the Explanatory Variables Significant?—The t-Test
If the hypothesis test of the overall regression model indicates a significant relationship
between the response variable and at least one of the explanatory variables, the next step
is to figure out which of the explanatory variables is significant.

We conducted a t-test about the slope of the regression line in Chapter 13. We test
the individual coefficients in the multiple regression model in a similar fashion. The test
of the coefficient of explanatory variable i is conducted as follows.

H0: bi � 0

H1: bi ≠ 0

The test statistic is , with (n � (k � 1)) degrees of freedom.

It is important to realize that this t-test for the significance of each explanatory
variable assumes that all the other explanatory variables are included in the model. The
p-values for the individual coefficients do give us some indication of how important
each explanatory variable is. Those with small p-values are likely more strongly related
to the response variable. However, we cannot just eliminate an explanatory variable

t =  
bi

sbi

PART V ANALYZING RELATIONSHIPS544

EXHIBIT 14.15
Excel Regression Output for Woodbon Model, with Mortgage Rates, Housing Starts, and Advertising
Expenditure as Explanatory Variables
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with a p-value greater than the level of significance. If we decide to eliminate any
explanatory variable, we must rerun the regression analysis and examine the new
model and the new p-values for the coefficients.

Remember that the t-tests for the individual coefficients should only be conducted
if the F-test of the overall model shows that it is significant. We can control the Type I
error rate on a single t-test with the level of significance (�), but the error rate becomes
larger with repeated tests based on the same data set.5 Therefore, the individual t-tests
should only be performed when the overall Type I error rate is controlled, through the
F-test.
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Hypothesis tests of individual 
coefficients in regression model

Conduct hypothesis tests about the significance of the individual coefficients in the
Woodbon model.

As in the simple linear regression case, the Excel output contains the p-values for the
two-tailed tests of significance for the individual coefficients. An excerpt from the Excel
output is shown below in Exhibit 14.16.

EXAMPLE 14.3B

EXHIBIT 14.16
Excerpt from the Excel Regression Output for Woodbon Model, with Mortgage Rates, Housing
Starts, and Advertising Expenditure as Explanatory Variables

5 This problem was discussed in Chapters 10 and 11—be careful when you are skating back and forth
across the frozen lake!

For convenience, we will refer to the mortgage rates as explanatory variable 1, housing
starts as explanatory variable 2, and advertising expenditure as explanatory variable 3.

Hypothesis test for mortgage rates:

H0: b1 � 0

H1: b1 ≠ 0

The p-value is 0.000026, so we reject H0. There is strong evidence that mortgage
rates are a significant explanatory variable for Woodbon annual sales, when housing
starts and advertising expenditure are included in the model.

t =  
b1

sb1

 = –5.18 1from Excel output2
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Hypothesis test for housing starts:

H0: b2 � 0

H1: b2 ≠ 0

The p-value is 0.005, so we reject H0. There is strong evidence that housing starts
are a significant explanatory variable for Woodbon annual sales, when mortgage rates
and advertising expenditure are included in the model.

Hypothesis test for advertising expenditure:

H0: b3 � 0

H1: b3 ≠ 0

The p-value is 0.0000001, so we reject H0. There is strong evidence that advertising
expenditure is a significant explanatory variable for Woodbon annual sales, when mortgage
rates and housing starts are included in the model.

As always, while we can conclude that mortgage rates, housing starts, and
advertising expenditure are significant explanatory variables for Woodbon annual
sales, this does not mean that we can conclude that changes in these variables have
caused the changes in sales.

Adjusted Multiple Coefficient of Determination
In Chapter 13, we used the coefficient of determination, or R2, as an indication of how
well the x-variable explained the variations in the y-variable. Remember, that

Adding more explanatory variables to the regression model will never reduce the R2

value, and generally will tend to increase it. In fact, if you have n data points, it is always
possible to develop a model that will fit the data perfectly, with n – 1 explanatory vari-
ables. However, this model is not likely to yield good predictions, because it is only the
result of a lot of arithmetic instead of good thinking about the relationships between the
response and explanatory variables. Such a model is usually described as “overfitted.” It is
possible to adjust the R2 value to compensate for this tendency of R2 to increase when
another explanatory variable is added to the model.

It is easiest to see the relationship between the R2 and the adjusted R2 if we start
with a restatement of R2. We know SST � SSR � SSE, so SSR � SST – SSE. Substituting
this into the formula for R2 yields the following:

R2
=  

SSR

SST
 =  

SST - SSE

SST
 = 1 -  

SSE

SST

R2
=  

SSR

SST

t =

b3

sb3

= 7.42 1from Excel output2

t =  
b2

sb2

 = –3.08 1from Excel output2
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The adjusted R2 is calculated as follows:

The adjusted R2 is calculated by Excel as part of the Regression output.
The adjusted R2 value will generally be smaller than the unadjusted R2 value. As

well, because the formula takes into account the number of explanatory variables being
used (k), the adjusted R2 will not necessarily increase when another variable is added to
the model.

Excel’s Regression output provides the adjusted R2 value. For the Woodbon model,
it is 0.944, as shown below in Exhibit 14.17. Notice that the adjusted R2 value, at 0.944,
is less than the R2 value of 0.951.

Adjusted R2
= 1 -  

SSE
n - 1k + 12

SST
n – 1
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EXHIBIT 14.17
Excel Regression Statistics for Woodbon Model, with Mortgage Rates, Housing Starts,
and Advertising Expenditure as Explanatory Variables

DEVELOP YOUR SKILLS 14.3
The Develop Your Skills exercises in this chapter frequently
refer to a data set called “Salaries.”
11. Apply the formula for the adjusted R2 to verify the

value shown in Exhibit 14.17. Note that the SSE and
SST are shown in the Excel Regression output.

12. Conduct a test of the significance of the overall model
for the salaries model which includes all explanatory

variables. Test the significance of the individual explana-
tory variables. What does this tell you?

13. Conduct a test of the significance of the overall model
for the salaries model that includes years of postsec-
ondary education and age as explanatory variables. Test
the significance of the individual explanatory variables.
What does this tell you?

SALARIES
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14. Conduct a test of the significance of the overall model for
the salaries model that includes years of postsecondary
education and years of experience as explanatory vari-
ables. Test the significance of the individual explanatory
variables. What does this tell you?

15. Compare the adjusted R2 values for the three models of
salary from Exercises 12, 13, and 14 above. Based on the
adjusted R2, which model does not seem worth consid-
ering at this point?

MAKING PREDICTIONS
One of the reasons for building a multiple regression model for Woodbon annual
sales was to allow Kate Cameron, Woodbon’s owner, to make sales predictions. Of
course, the only explanatory variable in the present model that Kate can control is
advertising expenditure. Kate will have to guess at the values of the other variables
(mortgage rates and housing starts) if she wants to predict sales for the coming year.
Suppose Kate plans to spend $3,000 on advertising next year, and she expects that
five-year mortgage rates will be around 7% and that housing starts for the province
will be 3,800.

By substituting these specific values into the regression equation, Kate arrives at a
point estimate for Woodbon annual sales.

Woodbon annual sales � $80,640.56739 � $3,521.91472 (mortgage rate) � $5. 47726
(housing starts) � $23.41351(advertising expenditure)

� $80,640.56739 � $3,521.91472 (7) � $5.47726 (3,800) 
� $23.41351 (3,000)

� $105,414.11

In Chapter 13, we also created prediction and confidence intervals from regression rela-
tionships. Remember, a regression prediction interval predicts a particular value of y
(sales) for a set of specific values of the x-variables (in this case, mortgage rate, housing
starts, and advertising expenditure). A regression confidence interval predicts the average
y for a set of specific values of the x-variables.

While the formulas for prediction and confidence intervals were fairly simple to
understand when there was only one explanatory variable (with a given value of x0),
they become more complicated with two or more explanatory variables. Constructing
these intervals for multiple regression requires the use of matrix algebra. An Excel
add-in (Multiple Regression Tools) has been created to do these calculations. This
add-in was first introduced in Chapter 13 (see page 514).

You should type the specific values of the explanatory variables that will be the
basis of your intervals into adjacent columns in the spreadsheet containing the sample
data. It is easiest to input the values in the correct order if they are typed at the bottom
of the columns of explanatory variable data. Exhibit 14.18 illustrates (note that some of
the rows of data have been hidden in the worksheet).

14.4
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As before, the Confidence Interval and Prediction Intervals – Calculations tool in
Multiple Regression Tools requires you to indicate the locations of the labels and values
of the variables, the location of the specific values of the explanatory variables on which
you want to base your intervals, a level of confidence (percentage form), and an output
range. Example 14.4 below provides the results.
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EXHIBIT 14.18
Typing in Specific Values of Explanatory Variables as Basis for Intervals

Calculating confidence and 
prediction intervals with Excel

Use Excel to create a prediction interval for Woodbon sales, when mortgage rates are
7%, housing starts are 3,800, and advertising expenditure is $3,000.

Once these specific values are typed into the spreadsheet, the Multiple Regression Tools
add-in is used to create the following output (note that columns have been resized for
visibility).

EXAMPLE 14.4

EXHIBIT 14.19
Confidence Interval and Prediction Intervals – Calculations Result for Woodbon Data
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Remember, it is not legitimate to make predictions from the regression model for
values of the explanatory variables that are outside the range of the values in the data set
on which the model is based. So, for example, Kate should not rely on the model to make
predictions for an advertising budget of $5,000, because Woodbon has never spent more
than $3,500 on advertising in the past.
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DEVELOP YOUR SKILLS 14.4
The Develop Your Skills exercises in this chapter frequently
refer to a data set called “Salaries.”
16. Use Excel to create a 95% confidence interval of aver-

age Woodbon sales, when mortgage rates are 6%, hous-
ing starts are 3,500, and advertising expenditure is
$3,500. Interpret the interval.

17. Would it be appropriate to use the Woodbon model to
make a prediction for mortgage rates of 6%, housing
starts of 2,500, and advertising expenditure of $4,000?
Explain why or why not.

18. Use the salaries model based on years of postsecondary
education and age to make a 95% prediction interval
estimate of the salary of an individual who is 35 years
old and has five years of postsecondary education.

19. Use the salaries model based on years of postsecondary
education and age to make a 95% confidence interval
estimate of the average salary for individuals who are
35 years old and have five years of postsecondary edu-
cation. Do you expect this confidence interval to be
wider or narrower than the prediction interval estimate
from Exercise 18? Why?

20. Use the salaries model based on years of postsecondary
education and years of experience to make a 95% pre-
diction interval estimate of the salary of an individual
who has five years of postsecondary education and
10 years of experience.

SALARIES

A 95% prediction interval for Woodbon sales when mortgage rates are 7%, housing
starts are 3,800, and advertising expenditure is $3,000, is ($91,016.42, $119,811.81).
Notice that even though we have added explanatory variables to the model, and the fit is
better than it was in the simple linear regression model, the prediction interval is still
quite wide.

SELECTING THE APPROPRIATE
EXPLANATORY VARIABLES

Let us recap the steps we have followed to build the Woodbon sales model.

1. We began by thinking carefully about what explanatory variables might reasonably
be expected to have an impact on Woodbon’s sales, and we examined the relation-
ship between each of these variables and sales.

14.5
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2. We used Excel to estimate the multiple regression relationship between Woodbon
sales and mortgage rates, housing starts, and a leading indicator for retail trade in
furniture and appliances. We noted that the initial model had a negative coefficient
for housing starts, the opposite of what we expected.

3. We used Excel to check whether the regression model met the required conditions.
We examined plots of residuals against predicted sales, and residuals against each
of the explanatory variables. We noted that the residual plot for the leading indica-
tor did not exhibit the desired horizontal band shape. We also examined a plot of
residuals over time, which did not exhibit any particular time-related pattern. We
created a histogram of the residuals, and it appeared normal. We identified one
outlier in the data set.

4. The model that included the leading indicator did not conform to the required
conditions for linear regression (the variability in the residuals was not constant).
For this and other reasons, we eliminated the leading indicator as an explanatory
variable and recalculated the model. Again, we checked the required conditions,
and this time did not identify any obvious violations of the required conditions. We
identified one potential outlier, but because the associated data point was correct,
we left it in the model.

5. We conducted an F-test of the significance of the overall model, and we were able to
conclude there was a significant relationship between Woodbon sales and at least
one of the remaining explanatory variables (mortgage rates, housing starts, and
advertising expenditure).

6. We then conducted hypothesis tests about the coefficients for each explanatory
variable. In each case, we concluded that there was evidence that each of the
explanatory variables was significant, assuming the other explanatory variables
were included in the model.

7. We examined the adjusted R2 value, which was 0.94, indicating that the regression
model explained a significant portion of the variability in Woodbon sales.

At this point, it might seem that we have done enough work and that we have the
best possible model for Woodbon’s sales, based on these explanatory variables. However,
we must reflect carefully before we settle for the new model. More complicated models
are not necessarily better. We should realize that the adjusted R2 value for the new
model, at 0.94, is not that much higher than the adjusted R2 of 0.88 for the model based
on advertising expenditure alone. This might not be enough of an improvement to
justify the extra data required.

As well, it is possible for the adjusted R2 value to be high for a model that does not
predict well. Ultimately, a model that does not provide useful predictions of future sales
for Woodbon will not be worth maintaining.

Building a good regression model is a process that requires many steps, as we have
seen. Fortunately, computers do the calculations easily and quickly, and so we can look
at a number of possible models before choosing the “best” one. It is not always easy
to determine which is the best regression model, but these are some goals to keep 
in mind.
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One method of finding the “best” possible regression model is to create regres-
sions for all possible combinations of the explanatory variables being considered. For
the Woodbon data set, this would entail creating a regression model for each of the
following:

1. sales and mortgage rates
2. sales and housing starts
3. sales and advertising expenditure
4. sales and housing starts and mortgage rates
5. sales and mortgage rates and advertising expenditure
6. sales and housing starts and advertising expenditure
7. sales and housing starts and mortgage rates and advertising expenditure.

The resulting models can be assessed according to the criteria above. Some values
that may be useful to compare models are as follows:

1. The adjusted R2 values provide a measure of the strength of the relationship
between the explanatory variables and the response variable.

2. The standard error (sε) gives some indication of how wide the confidence and pre-
diction intervals would be. As discussed in Chapter 13, sε is the sample estimate of
the standard deviation of the error terms (residuals) in the model. A model with
less variability in the error terms will produce narrower and therefore more useful
confidence and prediction intervals.

3. The number of explanatory variables gives some indication of the data requirements
of the model. Adding an explanatory variable may reduce the width of confidence
and prediction intervals, if it reduces sε. However, adding an explanatory variable
will also decrease the degrees of freedom for the t-score (n – (k � 1)) used in the
confidence and prediction intervals (each additional variable increases k by 1), and 
t-scores with smaller degrees of freedom are larger (look at the table of t-scores in
Appendix 3 on page 581 if you are not sure of this). The larger t-score may at least
partially offset any reduction in sε that results from adding an explanatory variable.

The Multiple Regression Tools add-in allows you to easily create all possible regres-
sion models from a data set. Exhibit 14.20 opposite shows the Multiple Regression
Tools dialogue box, with the correct choice highlighted: All Possible Regressions
Calculations.
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Goals for Regression Models

1. The model should be easy to use. It should be reasonably easy to acquire data
for the model’s explanatory variables.

2. The model should be reasonable. The coefficients should represent a reason-
able cause-and-effect relationship between the response variable and the
explanatory variables.

3. The model should make useful and reliable predictions. Prediction and con-
fidence intervals should be reasonably narrow.

4. The model should be stable. It should not be significantly affected by small
changes in explanatory variable data.
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EXHIBIT 14.20
Multiple Regression Tools Add-In, All Possible Regressions Calculations
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EXHIBIT 14.21
All Possible Regressions Dialogue Box

With this choice selected, click OK, and the next dialogue box will be as shown in
Exhibit 14.21.

You are required to:

1. Input the locations of the response (y) and explanatory (x) variable labels (Sales for
the response variable for the Woodbon data, and Mortgage Rates, Housing Starts,
and Advertising Expenditure for the explanatory variables).

2. Input the locations of the response (y) and explanatory (x) variable values.

The output is illustrated in Example 14.5A on the next page.
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Assess all possible regressions Use Excel to create all possible regression models for Woodbon sales, using housing
starts (which we will refer to as x1), mortgage rates (x2), and advertising expenditure
(x3) as possible explanatory variables.

The output from the All Possible Regressions Calculations results are shown below in
Exhibits 14.22a and b. The output is quite long, and when you are working in Excel, you
will have to scroll up and down to see everything.

EXAMPLE 14.5A

EXHIBIT 14.22
Results of All Possible Regressions for Woodbon Sales Model, with Housing Starts, Mortgage
Rates, and Advertising Expenditure as Explanatory Variables.

a)
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b)

So which model is best? While the results shown in Exhibit 14.226 can help us assess the
various regression models, these values cannot tell the whole story. There is a trade-off
when variables are added to the model. While the model may have more explanatory
power, it will also be more complicated, and more difficult to maintain.

If we look at Exhibit 14.22, we see that the model with all three explanatory vari-
ables has the highest adjusted R2 and the lowest standard error. However, the model has
a negative coefficient for housing starts, which does not seem reasonable. As well, adding
the housing starts variable only slightly improves it from the model with just advertising
expenditure and mortgage rates.

Whichever model we choose, it is important to check that it meets the required
conditions described in Section 14.2. An F-test of the significance of the model should
also be conducted. While it would be disappointing if the “best” model from all of the
possible regressions did not meet the required conditions, it would not be legitimate to
use the model for prediction or confidence intervals if it did not.

By now you can see that building a multiple regression model is an iterative process.
It can take some time to build, assess, and ultimately decide on the preferred model.
Fortunately, it is fairly easy to explore the possibilities with software such as Excel.

There is one more consideration that is important as we build multiple regression
models. Whenever we use more than one explanatory variable, we have to consider that
there may be interactions among these variables.

6 If your output for Model 5 does not match what is shown in this exhibit, see the note called “Excel’s
Floating Point Problem” at the end of the chapter, after the Chapter Review Exercises.
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A New Consideration: Multicollinearity
Collinearity occurs when two of the explanatory variables are related to each other.
Multicollinearity occurs when more than two of the explanatory variables are related to
each other. Generally, this potential problem with multiple regression is referred to as
“multicollinearity.”

Multicollinearity may cause one or more of the following problems:

1. The adjusted R2 is large and the F-test shows the overall model is significant, but
one or more of the estimated regression coefficients are statistically insignificant.

2. The estimated regression coefficients are not stable. The values change significantly
when explanatory variables are added to the regression relationship.

3. The estimated regression coefficients do not make sense. They are larger or smaller
than would seem appropriate, or they have an unexpected sign.

Because of these problems, it is important to consider multicollinearity when building a
multiple regression model. Some degree of multicollinearity is present in almost every
multiple regression model.

The first method of guarding against multicollinearity is to choose the explana-
tory variables carefully. If mortgage rates, for instance, are being considered as an
explanatory variable in the Woodbon model, it would not make sense to include
prime rates or another mortgage rate in the model. Because such variables are likely
highly correlated with each other, most of the explanatory power is gained when the
first variable is introduced. The second variable will not likely tell us more about the
response variable.

There are various methods aimed at identifying collinear variables if the relationship
between them is not immediately obvious. One of these is to create a scatter diagram of
the relationship of every explanatory variable with every other explanatory variable.

In the Woodbon model, if we are thinking of choosing the model with advertising
expenditure and mortgage rates, we could create a scatter diagram of advertising expen-
diture and mortgage rates. Such a scatter diagram is illustrated in Exhibit 14.23 opposite.
It appears there is a fairly strong negative correlation between the two variables.

Another method of assessing the correlation between the explanatory variables is to
create a correlation matrix for the variables. This is easy to do with Excel, using the
Correlation tool of Data Analysis. If you select the adjacent columns of data, Excel will
produce a correlation matrix such as the one shown for the Woodbon problem in
Exhibit 14.24. Note that it is helpful to select the labels along with the data when using
this Excel tool.

The correlation coefficients tell us something about how the variables are related as
pairs. Of course, it is also possible that one explanatory variable could be simultaneously
related to two other explanatory variables, and neither the scatter diagrams nor the
correlation matrix will reveal this. The scatter diagrams and the correlation matrix will
help identify obvious pair-wise correlations between variables, but other harder-
to-identify sources of multicollinearity may also be present.

Whenever the correlation coefficients are close to 1 or –1, there are potential prob-
lems with multicollinearity. For example, in Exhibit 14.24 opposite, we see a correlation
coefficient of 0.946 between advertising expenditure and the leading indicator. If we had
not already eliminated the leading indicator as a potential explanatory variable, we would
probably have eliminated it because of its high correlation with advertising expenditure.
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Including the leading indicator variable in the model would have robbed advertising
expenditure of its explanatory power.

The collinearity between advertising expenditure and the leading indicator is
unexpected. There is no obvious reason for the two variables being connected.
However, the mathematical connection is clear, and because of it we should not
include both variables in the model.

The correlation coefficient between mortgage rates and advertising expenditure is
–0.8424, confirming what we saw in the scatter diagram: there is a fairly strong negative rela-
tionship between the two variables. Does this mean we should reject this regression model?

The answer depends on how Kate Cameron intends to use the model. Because of the
collinearity between mortgage rates and advertising expenditure, she should be careful
interpreting the regression coefficients. In the Woodbon sales model that includes mort-
gage rates and advertising expenditure, y � $59,670.88 � $3,132.53x2 � 22.74x3, the x3
coefficient is 22.74. Normally, we would interpret this coefficient as follows: for a given
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EXHIBIT 14.23
Scatter Diagram of Mortgage Rates and Advertising Expenditure

EXHIBIT 14.24
Correlation Matrix for Woodbon Variables
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Multiple regression, dealing
with collinearity

A sales manager is trying to build a model to predict sales by region. He has data on
population and total income in each region. The manager begins by creating a regres-
sion model including both total income and population as explanatory variables. An
excerpt from the Excel output is shown below in Exhibit 14.25. Examine the output
and explain the results.

EXAMPLE 14.5B

The regression model has an adjusted R2 value of 0.485. The model is significant, accord-
ing to the F-test (the p-value is approximately zero). However, the p-values for each of the
explanatory variables are quite large, indicating that none of them is significant. Since
these are the only variables in the model, this does not make sense.

mortgage rate, each additional dollar spent on advertising increases Woodbon sales by
$22.74. However, because of the collinearity, such an interpretation is not reliable. If Kate
wants to know the true nature of the relationship between Woodbon sales and advertising,
she should not rely on a model that includes both advertising expenditure and mortgage
rates. However, if Kate’s only purpose is to predict Woodbon’s sales, this model is still proba-
bly the best, because it has a high adjusted R2 and a fairly low standard error.

Example 14.5B below discusses a case in which there is strong collinearity between
explanatory variables, and suggests a way to deal with the problem to improve the
regression model.

EXHIBIT 14.25
Regression Output for Example 14.5B

EXA14-5b
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USING INDICATOR VARIABLES
IN MULTIPLE REGRESSION

The regression analysis discussed so far has investigated quantitative explanatory vari-
ables. Sometimes we are interested in the effect that a qualitative characteristic might
have on a response variable (for example, male/female, urban/rural). It is possible to
include such information in regression analysis with the use of indicator variables
(sometimes called “dummy” variables). If the qualitative variable we are interested in is
binary, that is, it has only two categories, then we can represent it with a single indicator
variable (for example, “0” for male, “1” for female).

Indicator Variables for Qualitative Explanatory Variables with Only Two
Categories Once the qualitative variable is coded, it can be treated like any other
variable in the regression analysis. For example, suppose we have data on the income
and gender of the head of household for a random sample of credit card holders, as well
as the monthly credit card bill.

The Excel Regression output for the data set, with both explanatory variables, is
shown on the next page in Exhibit 14.26.

14.6
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Total income for a region will of course be closely related to the population of the
region. Regions with larger populations will have greater total incomes. In this data set, the
correlation coefficient between total income and population is 0.936. If the sales manager
wants to investigate the effect of income on sales, he should take out the population effect by
working with per capita income. Adjusting the income data and exploring the new regres-
sion model are left to the reader as an exercise (see Develop Your Skills 14.5, Exercise 22).

DEVELOP YOUR SKILLS 14.5
The Develop Your Skills exercises in this chapter frequently
refer to a data set called “Salaries.”
21. Does the Woodbon model that includes mortgage rates

and advertising expenditure meet the required condi-
tions for regression? If so, conduct an F-test on the sig-
nificance of the model.

22. Adjust the total income data for Example 14.5B, and
analyze the new regression model that includes both
per capita income and population. Is the model signifi-
cant? Are both explanatory variables significant?
Continue your analysis of the data and decide on the
best regression model for this data set.

23. Create a correlation matrix for the variables in the
Salaries data set. Discuss which explanatory variables

should not be used simultaneously, and which look
most promising to explain salaries.

24. Create all other possible regression models for the
Salaries data. The models will be based on the follow-
ing explanatory variables:

a. years of postsecondary education alone
b. years of experience alone
c. age alone
d. age and years of experience

25. Compare all possible models for the Salaries data, and
select the “best” regression model.

SALARIES

EXA14-5b

SEC14-2

SEC14-6
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EXHIBIT 14.26
Excel Regression Output for Credit Card Data Set

From the F statistic and the associated p-value, we can see that the model is signifi-
cant. There appears to be a relationship between the monthly credit card bill and at least
one of income and the gender of the head of household. As well, the p-value for the 
t-test of the significance of the gender variable is 0.023, indicating that it is significant in
the model (for a significance level of 0.05, for instance).

The regression relationship is as follows (with some rounding of the coefficients):

Monthly credit card bill � $582 � $19 (income in $000) � $342 (gender variable)

Notice that this means the following:

• If the credit card holder is male (gender variable � 0), the regression relationship is:

Monthly credit card bill � $582 � $19 (income in $000)

• If the credit card holder is female (gender variable � 1), the regression relationship is:

Monthly credit card bill � $582 � $19 (income in $000) � $342

� ($582 � $342) � $19 (income in $000)

� $240 � $19 (income in $000)

A binary indicator variable is sometimes called a “shift” variable, because it shifts the y-
intercept while leaving the slope unchanged. The two regression relationships are shown in
Exhibit 14.27 opposite. The regression relationship predicting monthly credit card bills for
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EXHIBIT 14.27
Effect of Gender Variable on Credit Card–Income Relationship

Monthly Credit Card Bills and Annual Income
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male heads of household (the blue line in the graph) is $342 higher than the regression rela-
tionship predicting monthly credit card bills for female heads of household (the red line).

Another way to think of the binary variable is as an on-off switch. When the switch
is on (gender variable � 1), we are estimating the monthly credit card bills of female
heads of household. When the switch is off (gender variable � 0), we are estimating the
monthly credit card bills of male heads of household.

Adding gender to the regression model improves it over the model with income
alone (in Develop Your Skills 14.6, Exercise 26, you will get a chance to explore this).
However, we should not automatically conclude that gender is the cause of the differ-
ence in monthly credit card bills. Other factors such as wealth and the number of people
in the household may be the cause of the differences we have observed in the credit card
bills of male and female heads of household.

Since the end result of this regression analysis is two regression lines, one for each
gender, you might wonder if it would be reasonable to skip the indicator variable, and
instead build two regression models, one for male heads of household and one for
female heads of household. The advantage of using the indicator variable approach is
straightforward. Using the indicator variable in the model allows us to test whether gen-
der has a significant effect on the credit card bills. If we simply build two models, we
cannot conduct this statistical test. As well, pooling all of the data together allows us to
make better estimates of the coefficients.

Another question you might have is this: is it possible to do regression analysis with
only indicator variables, and no quantitative explanatory variables? The answer is yes, and
the equivalent procedure is covered in Chapter 11. There, we tested to see if a quantitative
response variable (such as battery life) varied according to levels of a qualitative explanatory
factor (such as battery brand). The equivalence between the ANOVA procedures in Chapter
11 and regression with indicator variables is illustrated on the next page in Example 14.6.
Since our ANOVA analysis considered factors with more than two levels, we will first
consider regression using qualitative explanatory variables with more than two categories.
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Indicator Variables for Qualitative Explanatory Variables with More Than
Two Categories Sometimes the qualitative variable we are interested in has more than
two possible (mutually exclusive) results. For example, we might be interested in whether
three different brands of battery are associated with different battery life in minutes.

In such a case, we can use a series of indicator variables that tell us about the pres-
ence (value � 1) or absence (value � 0) of the brand characteristic. In the case of three
battery brands, we will use two indicator variables in combination. For example, we
could set the Onever variable � 1 if the brand is Onever, and 0 otherwise. We would set
the Durible variable � 1 if the brand is Durible, 0 otherwise. This is sufficient, because
if both indicator variables are equal to zero, this necessarily means that the third brand
category (PlusEnergy) must apply. Exhibit 14.28 below illustrates. Note that we could
have used any of the possible categories as the “missing” one.
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It is important to use one fewer indicator variables than categories, to avoid problems
with the regression analysis. We know that the value of the PlusEnergy indicator variable
would be equal to (1 – sum of the values of the indicator variables for the other battery
brands). Including a third indicator variable in the model would violate the requirement
for independence of the explanatory variables. In addition, it would cause an error in Excel.

Recognize that some common sense is required when introducing qualitative vari-
ables into regression analysis. If a qualitative variable has many possible categories,
requiring the use of several indicator variables, and if more than one qualitative variable
is being considered, the number of explanatory variables can quickly get very high, per-
haps too high to be reasonable for small data sets. As always, think carefully before you
introduce a qualitative variable (or any variable) into the analysis.

Example 14.6 below illustrates the use of indicator variables for a qualitative
explanatory variable with more than two possible categories.

EXHIBIT 14.28
Two Indicator Variables for Three Battery Brands

Two Indicator Variables (in Combination) 

to Convey Three Battery Brands

Onever 1 0

Durible 0 1

PlusEnergy 0 0

Regression with a qualitative
explanatory variable

The owner of a winery is wondering whether the average purchase of visitors to her
winery differs according to age. She asks the cashiers to keep track of a random sample of
purchases by customers in three age groups: under 30, 30–50, over 50. Because there is no
good reason to ask a customer his or her age, the cashiers guess which age group a cus-
tomer belongs to (and if they do not guess accurately, the research may not be helpful).
Eventually, data from about 50 purchases made by customers in each of the age groups is
collected. Does it appear that there is a relationship between customer age and the value
of the winery purchase?

EXAMPLE 14.6

EXA14-6
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First, the winery data must be arranged with all purchases in one column, and the indi-
cator variables set up to indicate age group. Exhibit 14.29 below provides an excerpt
from an Excel spreadsheet where the data are set up as required.

EXHIBIT 14.29
Excerpt of Winery Purchase Data Set with Indicator Variables for Age Group

...

...

Next, run Excel’s Regression tool on the data set. The output is as shown in
Exhibit 14.30 on the next page.

How do we interpret the regression equation?

• When the “under 30” indicator variable � 1, then:

Winery purchase for customers under 30 � $132.47 � $54.90 (1) � $12.80 (0) � $77.57

• When the “30–50” indicator variable � 1, then:

Winery purchase for customers aged 30–50 � $132.47 � $54.90 (0) � $12.80 (1) � $119.67

• When the “under 30” indicator variable � 0, and the “30–50” indicator variable � 0,
then the age group is “over 50.”

Winery purchase for customers over 50 � $132.47 – $54.90 (0) – $12.80 (0) � $132.47

Notice that a hypothesis test about the overall regression would report an F statistic
of 67.49, with a very low significance level. Thus we can conclude that there is evidence of
a relationship between winery purchase and age group. As well, each of the indicator
variables included in the regression is significant (at the 5% level of significance).

For comparison, the Excel output for Anova: Single Factor is shown in Exhibit 14.31
on the next page.

The F-statistic for the hypothesis test about equality of population means is also 67.49,
with the same significance level as in the Regression output. Notice that both procedures
analyze the data in a similar way. In the regression analysis, the total variation in the y-variable
(winery purchases) is partitioned into the portion that can be explained by the x-variable
(the age groups), and the portion that is unexplained (the residuals, or errors). In the
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EXHIBIT 14.30
Regression Output for Winery Purchase Data Set

EXHIBIT 14.31
Anova: Single Factor Excel Output for Winery Purchase Data Set

14Ch14_Skuce.QXD  1/16/10  5:49 AM  Page 564



CHAPTER 14 ANALYZING LINEAR RELATIONSHIPS, TWO OR MORE VARIABLES 565

DEVELOP YOUR SKILLS 14.6
26. Examine the data set for credit card bills. Create a regres-

sion model for credit card bills based on income. Compare
this with the regression model for credit card bills based
on income and the gender of the head of household.
Does adding the gender variable improve the model
significantly?

27. Build a regression model, with indicator variables for
battery brand, to assess whether there is a significant
relationship between battery life in minutes and battery
brand. This revisits the battery example in Chapter 11.

28. A sales manager is trying to build a sales forecasting
model based on number of sales contacts and region. Is
region a significant explanatory variable in this model?

29. A production manager has collected data on the num-
ber of units produced and the number of employees at

work, for the day shift and the night shift. Is shift a sig-
nificant explanatory variable for the number of units
produced?

30. Statistics Canada collects census data about Canadians
every five years. The department provides data files that
contain a representative sample of anonymous individ-
ual responses to census surveys. A subset of these data is
provided in the file DYS14-30. There is information on
Canadians from Alberta and Ontario. Age and wages
and salaries are shown for individuals who had non-
zero wages and salaries in the data set.7 Use an indicator
variable for province, and build a regression model for
wages and salaries, based on age and province. Is
province a significant explanatory variable in this
model?

SEC14-6

DYS14-27

DYS14-28

DYS14-29

DYS14-30

7 Data for this exercise are a subset of the data available in the StatsCan microfile. Only age, wages, and
salaries for those with non-zero wages and salaries data are used, for only Alberta and Ontario.

analysis of variance, the F statistic compares the variation associated with the age groups
(the “between groups” variation) with the unexplained variation (“within groups”). Of
course, the sums of squares and the mean squares are exactly the same for the two procedures,
because they are accomplishing the same tasks. This explains why some of the regression
output has the “ANOVA” heading. The Regression sum of squares (SS) in the Regression
output is the same as the Between Groups SS in the ANOVA output. The Residual SS in the
Regression output is the same as the Within Groups SS in the ANOVA output.

MORE ADVANCED MODELLING
This chapter has been an introduction to building mathematical models of linear rela-
tionships between quantitative response variables and two or more explanatory vari-
ables. Within the chapter we have seen many modelling possibilities.

You should be aware that more advanced mathematical modelling techniques exist,
which are beyond the scope of this text. It is possible to build models that are polynomial, to
account for curvature in the relationships. There are special techniques for time-series trend
analysis. With the appropriate training and good computer software, it is possible to build
complex and sophisticated models of relationships. However, complex models are not nec-
essarily the “best” models. The simplest model that provides useful predictions is preferred.

Finally, always remember that mathematical models generally cannot prove cause
and effect, and we should always be careful in interpreting the results of model building.
Even if a model appears to work very well, the true cause-and-effect relationship may
not have been revealed.

14.7
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Determining the Relationship
Begin by thinking carefully about the explanatory variables that might reasonably be expected to
affect the response variable. Create scatter plots to examine the relationship between the response
variable and each explanatory variable. Use Excel’s Regression tool to estimate the coefficients of
the multiple regression relationship.

Checking the Required Conditions
Theoretically, there is a normal distribution of possible y-values for every combination of x-values.
The population relationship we are trying to model is as follows:

y � b0 � b1x1 � b2x2 � � � � � bkxk � �

We cannot reliably make predictions with the regression equation, or conduct a hypothesis
test about the significance of the regression relationship, unless certain conditions are met (these
are summarized in the box on page 532). The Guide to Technique: Checking Requirements for the
Linear Multiple Regression Model on page 540 outlines a process for checking the required condi-
tions for the regression model.

How Good Is the Regression?
If the required conditions are met, conduct an F-test of the significance of the relationship. This
will be of the form:

H0: b1 � b2 � � � � � bk � 0

H1: At least one of the bi’s is not zero.

The F statistic is

with (k, n – (k � 1)) degrees of freedom, where n is the number of observed data points and k is
the number of explanatory variables in the model. When the response variable is related to at least
one of the explanatory variables, MSR will be significantly larger than MSE.

The output of Excel’s Regression tool provides the F statistic and the p-value for this test. See
page 544 for instructions on how to read the output.

If the results of the F-test show that the model is significant, t-tests of the significance of the
individual explanatory variables can be conducted. The test of the coefficient of explanatory variable
i is conducted as follows.

H0: bi � 0

H1: bi ≠ 0

The test statistic is , with (n � (k � 1)) degrees of freedom.

The output of Excel’s Regression tool provides the p-values for the two-tailed tests of signif-
icance for the individual coefficients. See page 545 for instructions on how to read the output.

The adjusted R2 value is a measure of the strength of the relationship between the explana-
tory variables and the response variable.

The adjusted R2 is calculated by Excel as part of the Regression output.

Adjusted R2
= 1 -  

SSE
n - 1k + 12

SST
n – 1

t =  
bi
sbi

F =  

SSR
k

SSE
n - 1k + 12

 =  
MSR
MSE

14

Chapter
Summary
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Making Predictions
Two types of estimation intervals can be created if the requirements are met. A regression predic-
tion interval predicts a particular value of y, given a specific set of x-values. A regression confidence
interval predicts the average y, given a specific set of x-values. The Multiple Regression Tools
Excel add-in (Prediction and Confidence Intervals Calculations) calculates these intervals
(see page 548). Always remember that it is not legitimate to make predictions outside the range of
the sample data.

Selecting the Appropriate Explanatory Variables
The goals of a good regression model include the following:

1. The model should be easy to use. It should be reasonably easy to acquire data for the model’s
explanatory variables.

2. The model should be reasonable. The coefficients should represent a reasonable cause-
and-effect relationship between the response variable and the explanatory variables.

3. The model should make useful and reliable predictions. Prediction and confidence intervals
should be reasonably narrow.

4. The model should be stable. It should not be significantly affected by small changes in
explanatory variable data.

Use Excel to create all possible regression models for all combinations of possible explanatory
variables. The Multiple Regression Tools Excel add-in (All Possible Regressions Calculations)
makes this easy to do. The add-in produces a summary report which shows each regression
model, the adjusted R2 value, the standard error (sε), and the number of variables (k) for each
model. Use these measures to select a “best” model. Be sure to check the model chosen to see that
it meets the required conditions. Review the appropriate p-values to ensure that the overall model
is significant, and that the individual explanatory variables are significant.

Multicollinearity occurs when one of the explanatory variables is highly correlated with one
or more of the other explanatory variables. This can result in unstable or inaccurate regression
coefficients. To guard against this problem, choose explanatory variables carefully. Create scatter
diagrams of explanatory variable pairs, and create a correlation matrix for all the variables in the
model. If there is a pronounced pattern visible in the scatter diagram or a high correlation for a
pair of variables, consider including only one of them in the final model.

Using Indicator Variables in Multiple Regression
The effect of a qualitative characteristic on a response variable (for example, male/female,
urban/rural) can be modelled with indicator variables (sometimes called “dummy” variables). If
the qualitative variable we are interested in is binary, we can represent it with a single indicator
variable (for example, “0” for male, “1” for female). If the qualitative variable has more than two
possible (mutually exclusive) results, we can use a series of indicator variables that tell us about
the presence (value � 1) or absence (value � 0) of the qualitative characteristic. It is important
to use one fewer indicator variables than categories, to avoid problems with the regression
analysis.
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Go to MyStatLab at www.mathxl.com. You can practise the exercises indicated with red in the
Develop Your Skills and Chapter Review Exercises as often as you want, and guided solutions will
help you find answers step by step. You’ll find a personalized study plan available to you too!
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CHAPTER REVIEW EXERCISES
The Chapter Review Exercises allow you to explore two major data sets. One, called “Credit Card,”
contains data about credit card balances and possible explanatory variables such as income and
number of people in the household. Another data set, called “Marks,” contains data about the final
exam mark and marks on evaluations done during the semester (assignments, tests, and quizzes).

WARM-UP EXERCISES
1. The multiple regression model for monthly credit card balances and the age of the head of

household, income (in thousands of dollars), and the value of the home (in thousands of
dollars) is described in the Excel output shown below in Exhibit 14.32. Interpret the model.

CREDIT CARD

MARKS

2. Refer to the Excel output shown in Exhibit 14.32 above. Is the overall model significant?
You will have to estimate the p-value from the tables at the back of the text. Use a 5% level
of significance.

3. Refer to the Excel output shown in Exhibit 14.32 above. Test the individual coefficients for
significance. Use a 5% level of significance.

EXHIBIT 14.32
Excel Output for Monthly Credit Card Balances, Income in Thousands, and the Number 
of People in the Household
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THINK AND DECIDE
5. Consider the Marks data set, where the goal is to predict the final exam mark. Possible

explanatory variables are the marks on Assignments 1 and 2, Tests 1 and 2, and Quiz marks.
The tests and the final exam are written in a classroom, with all computations done manually
with a calculator. The quizzes are done with online testing software, and the calculations can
be done manually with a calculator or with Excel. Students can attempt the quizzes as many
times as they wish before the due date (the quizzes are similar but not the same). The assign-
ments are Excel-based and include a written report on the Excel analysis. Based on this infor-
mation, which of the evaluations do you think would be the best predictor of the final exam
mark, and why?

6. Exhibit 14.34 below shows the correlation matrix for the Marks data set. Is there any concern
about multicollinearity? Which explanatory variables seem the most promising?
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EXHIBIT 14.33
Correlation Matrix for Credit Card Data Set

EXHIBIT 14.34
Correlation Matrix for Marks Data Set

7. Exhibit 14.35 on the next page shows the output of the All Possible Models Calculations
tool in Multiple Regression Tools for all of the Marks models with one explanatory variable.
Given these results, is there one model that you would choose as better than the rest? If so,
explain why.

4. Given your answers to Exercises 2 and 3, what concerns do you have about the model? 
A correlation matrix for the values in the model is shown below in Exhibit 14.33 below.
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THINK AND DECIDE USING EXCEL
8. Use the model for credit card balances illustrated in Exhibit 14.32 to create a 95% prediction

interval for the monthly credit card balance of a credit card holder where the age of the head
of household is 45, income is $65,000, and the value of the home is $175,000. Do you think
this regression model is useful?

9. Use Excel to create all possible Marks models, and then consider those that have two explana-
tory variables. Note that there are 10 such models. Which of these models is best, and why? Is
this model a real improvement on the best single-variable model? Explain.
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CREDIT CARD

MARKS

EXHIBIT 14.35
All Possible Models Calculations Output for Marks Models with One Explanatory Variable
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10. Check that the best model you selected in Exercise 9 meets the required conditions.

11. For the Marks data set, create and examine all models with three explanatory variables that
include the mark on Test 2. Note that there will be six of these models. Does any of these rep-
resent a real improvement on the best two-variable model you selected in Exercise 9? Explain.

12. Create a regression model for the Marks data using all of the explanatory variables. In light of
the work you did in Exercises 9, 10, and 11, is this the best model? Explain.

13. Use the model you decided was best for the Marks data to predict the final exam mark of a
student who received a mark of 55 on Assignment 1, 60 on Test 1, 65 on Assignment 2, 70 on
Test 2, and 95 on the quizzes.

14. A researcher has collected a random sample of data about Honda Accords for sale in Ontario.
The data indicate year of the car, number of kilometres, and list price. Create and analyze all
possible regression models for these data. Be sure to check that the required conditions are
met. Is your model useful in terms of predicting the list price of used Honda Accords?

15. Think about your analysis in Exercise 14. Is the year of the car a quantitative variable? Create
an indicator variable for the year of the car, and rebuild the model. Describe the models, and
choose the best one.

16. A chain of retail outlets famous for their delicious (if unhealthy) doughnuts is looking for a
new location. The company is trying to use data on local median income, population in the
local area, and traffic flows by a proposed location to decide where to open a new store. The
company has collected data for a number of existing stores. Investigate these data, and make a
recommendation to the company about how to proceed.

17. A researcher has discovered some extra data for the doughnut store location decision
described in Exercise 16 above. Information was collected about whether each location was
within a five-minute drive of a major highway (1 � within a five-minute drive of a major
highway, 0 � otherwise). Re-analyze the data, including this extra information.

18. An MBA (Master of Business Administration) student decides to see if he can predict the
Standard and Poor’s Toronto Stock Exchange Composite Index from the price of one or
more share prices of Canadian companies.
a. The student collects monthly historical price data (November 2002 to November 2008)

for stocks from some important Canadian sectors8:
• Rona Incorporated, the largest Canadian distributor and retailer of hardware, home

renovation, and gardening products
• Royal Bank of Canada, a major Canadian bank
• Petro Canada, a Canadian oil and gas company with international interests
• Potash Corporation of Saskatchewan, an integrated producer of fertilizer, industrial,

and animal feed products
Do any of these stocks (or a combination of these stocks) provide a good predictor of the
TXS Composite Index?

b. During the fall of 2008, the world economy experienced an unprecedented crisis and
stock markets around the world gyrated wildly. Is there evidence of this in the data you
examined in part a of this question? Would it be wise to try to build a model to predict the
TSX Composite Index using data from this period? Explain.

19. Statistics is a course with a bad reputation. Students tend to expect that they will have diffi-
culty with the course, even when they do not know exactly what the course is about. A stu-
dent decides that he wants to place Statistics in a proper context, and he collects data on a
random sample of students studying in their third semester (the beginning of second year).
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The student attempts to predict the Statistics mark from the marks in other courses. Help
him by deciding which of the possible models is best.

20. Check the required conditions of the model you chose in Exercise 19. If the required condi-
tions are not met, do some further analysis and develop a model that will predict the
Statistics mark and meets the required conditions.

21. Use the best model you created in Exercise 20 to predict the Statistics mark of a student who
received 65 in all of the other courses.

TEST YOUR KNOWLEDGE
22. Marcharpex is a company selling specialized software products to a select number of manu-

facturing companies. The company relies on senior salespeople to make contacts, sell the
product, and provide a company contact for after-sales support. The company is wondering
if its sales model is effective, and it has collected some data on

• the years of experience of the salesperson
• the monthly travel and entertainment budget of the salesperson
• the local advertising budget (monthly) for the salesperson’s area
• the sales in the area

Analyze the data, and select the best model to predict sales. Be sure to check the required con-
ditions. Once you select the best model, create a 95% prediction interval (approximate) of
the sales for a salesperson who has 15 years of experience, a monthly travel and entertain-
ment budget of $2,000, and a local advertising budget of $4,000.

A NOTE ABOUT EXCEL’S FLOATING POINT PROBLEM
Depending on your computer, you may have seen a different result in your output for the
Woodbon model with mortgage rates and advertising expenditure. The model might have been
y � $10.31 � $0.87x2 � 0.01x3, with an adjusted R2 of 0.948, and a standard error of only $2! The
first time the author ran the regression in Excel (on an older computer) this was the result.
However, if we examine this model, we see that it does not make any sense. If advertising expendi-
ture were $3,000 and mortgage rates were 7%, this model predicts that Woodbon’s sales would be
$10.31 � $0.87(7) � 0.01($3,000) � $34.22. This prediction is clearly unreasonable. This is a good
lesson in using some common sense, and not relying too much on measures such as R2 to choose a
regression model. But what went wrong?

Excel has a “floating point” problem that sometimes produces inaccurate results when the
data used to calculate the model are on significantly different scales. Advertising expenditures
range from $500 to $3,500 and sales range from $21,334 to $115,320. In contrast, mortgage rates
range from 5.99 to 18.38. Because mortgage rates vary only by units (as these rates are expressed),
and the other variables vary by hundreds or thousands, the scales are not the same general order
of magnitude. The alternate model shown above does not make sense, because Excel and an older
computer did not successfully handle the situation. While such a problem does not arise often, it
can be a good idea to scale your input data to the same order of magnitude. As well, if Excel pro-
duces nonsensical results, you should check the scale of your input data and re-scale if necessary.

Fortunately, the fix is easy. If this happened to you, simply change the scale of the mortgage
rates by multiplying by 100, for example. A mortgage rate data point of 14.52083 becomes 1452.083,
which is effectively 100x2. Then the mortgage rate data points will vary by hundreds, and will be on
a similar scale with the other explanatory variable in the model. The multiple regression model that
includes these adjusted mortgage rate data points and advertising expenditure is:

y � $59,670.88 � $31.3253 (100x2) � 22.74x3.

This can of course be rewritten as

y � $59,670.88 � $3,132.53x2 � 22.74x3.

This model matches the output in Exhibit 14.22.
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