PEARSON Formula Card and Guide to Descriptive and Inferential Techniques for Analyzing Data and Making Decisions

Second Edition, by Judith Skuce

CHAPTER 2

Calculating class width (p. 35)

Class width =
$$\frac{\frac{\text{maximum}}{\text{value}} - \frac{\text{minimum}}{\text{value}}}{\sqrt{n}}$$

CHAPTER 3

Calculating the sample mean (p. 105)

 $\bar{x} = \frac{\sum x}{x}$

Calculating the location of the median (p. 109)

0.5(n+1)

Calculating the sample standard deviation with the computational formula (p. 119)

$$s = \sqrt{\frac{\sum x^2 - \frac{(\sum x)^2}{n}}{n-1}}$$

Calculating the interquartile range (p. 129)

Location of $Q_1 = 0.25(n + 1)$ Location of $Q_3 = 0.73(n+1)$ $IQR = Q_3 - Q_1$

If two events are independent, then (p. 162)

P(A|B) = P(A) and P(B|A) = P(B)

Calculating the conditional probability of *A* given *B* (p. 166)

$$P(A|B) = \frac{P(A \text{ and } B)}{P(B)}$$

Calculating the probability of A and B(p. 167)

$$P(A \text{ and } B) = P(A) \cdot P(B|A)$$

Calculating the probability of A and Bwhen A and B are independent events (p. 169)

$$P(A \text{ and } B) = P(A) \cdot P(B)$$

Calculating the probability of *A* or *B* (p. 170) P(A or B) = P(A) + P(B) - P(A and B)

Calculating the probability of A or B when A and B are mutually exclusive (p. 171)

P(A or B) = P(A) + P(B)

Calculating the probability of an event A using the complement rule (p. 172)

$$\mathbf{P}(A) = 1 - \mathbf{P}(A^{\mathrm{C}})$$

CHAPTER 5

Calculating the mean of a discrete probability distribution (p. 187)

$$\mu = \sum (x \cdot P(x))$$

Calculating the standard deviation of a Test statistic for the hypothesis test of a discrete probability distribution using the computational formula (p. 187)

$$\sigma = \sqrt{\Sigma x^2 P(x) - \mu^2}$$

Calculating the mean and standard deviation of a binomial random variable (p. 190)

> $\mu = np$ $\sigma = \sqrt{npq}$

Calculating the probability of
$$x$$
 successes
in binomial experiment with n trials and
probability of success p (p. 194)

 $P(x \text{ successes}) = \binom{n}{n} p^{x} q^{n-x}$

Calculating the z-score to standardize a normal random variable (p. 212)

$$z = \frac{x - \mu}{\sigma}$$

Calculating the *x*-value that corresponds to a particular normal probability (p. 214)

$$x = \mu + z \cdot \sigma$$

CHAPTER 6

 $\mu_{\overline{x}} = \mu$ $\sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$ Calculating the mean and standard error of the sampling distribution of sample proportions (p. 248)

> $\sigma_{\hat{p}} = \sqrt{\frac{pq}{n}}$ $\mu_{\hat{p}} = p$

Conditions required for the normality of the sampling distribution of the sample proportions (p. 248)

$$p \ge 10 \text{ and } nq \ge 10$$

CHAPTER 7

proportion (p. 274)

$$z = \frac{\hat{p} - \mu_{\hat{p}}}{\sigma_{\hat{p}}} = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n}}}$$

Test statistic for the hypothesis mean (p. 276)

$$t = \frac{\overline{x} - \mu_{\overline{x}}}{s_{\overline{x}}} = \frac{\overline{x} - \mu}{s / \sqrt{n}}$$

CHAPTER 8

Constructing the confidence interval estimate for *p* (p. 304)

$$\hat{p} \pm (\text{critical } z\text{-score}) \sqrt{\frac{\hat{p}\hat{q}}{n}}$$

Constructing the confidence interval estimate for μ (p. 309)

$$\bar{x} \pm (\text{critical } t\text{-score})\left(\frac{s}{\sqrt{n}}\right)$$

Calculating the sample size required for an estimate of μ (p. 314)

$$n = \left(\frac{(z - \text{score})(s)}{\text{HW}}\right)^2$$

Calculating sample size required for an estimate of p (p. 316)

$$n = \hat{p}\hat{q}\left(\frac{z\text{-score}}{\text{HW}}\right)$$

CHAPTER 9

(p. 335)

(p. 353)

matched pairs (p. 335)

 $z = rac{W - \mu_{_W}}{\sigma_{_W}}$

Test statistic for the hypothesis test of Calculating the mean square for withinthe mean difference in matched pairs sample variation (p. 411)

$$t = \frac{\bar{x}_D - \mu_D}{s_D / \sqrt{n_D}} \qquad \qquad MS_{\text{within}} = \frac{SS_{\text{within}}}{n_T - k}$$
$$= \frac{SS_1 + SS_2}{SS_1 + SS_2}$$

 $= \frac{\mathrm{SS}_1 + \mathrm{SS}_2 + \cdots + \mathrm{SS}_k}{n_r - k}$ Constructing a confidence interval estimate for the mean difference in Calculating the mean square for

$$\bar{x}_{D} \pm \text{ critical } t\text{-score}\left(\frac{s_{D}}{\sqrt{n_{D}}}\right) \qquad \text{MS}_{\text{between}} = \frac{\text{SS}_{\text{between}}}{k-1}$$

$$MS_{between} = \frac{0.0between}{k-1}$$

Test statistic for W, in the Wilcoxon Signed Rank Sum Test, $n \ge 25 = \frac{n_1(\bar{x}_1 - \bar{\bar{x}})^2 + n_2(\bar{x}_2 - \bar{\bar{x}})^2 + \dots + n_k(\bar{x}_k - \bar{\bar{x}})^2}{k-1}$

Calculating the test statistic for onefactor ANOVA (p. 419)

CHAPTER 11

$$F = \frac{MS_{between}}{MS_{within}}$$

 $= \frac{W - \left(\frac{n_w(n_w + 1)}{4}\right)}{\sqrt{\frac{n_w(n_w + 1)(2n_w + 1)}{24}}} \qquad \text{Calculating the Tukey-Kramer confidence interval for } (\mu_i - \mu_j) \text{ (p. 423)}} \\ (\bar{x}_i - \bar{x}_j) \pm q \text{-score } \sqrt{\frac{MS_{\text{within}}}{2}\left(\frac{1}{n_i} + \frac{1}{n_j}\right)}$

Test statistic for the sign test (p. 361)

CHAPTER 12

Calculating the pooled proportion for the hypothesis test of two proportions, with proportions hypothesized to be equal (p. 439)

$$\hat{p} = \frac{x_1 + x_2}{n_1 + n_2}$$

Test statistic for the hypothesis test of two proportions, proportions hypothesized to be equal (p. 445)

$$z = \frac{(\hat{p}_1 - \hat{p}_2) - \mu_{\hat{p}_1 - \hat{p}_2}}{S_{\hat{p}_1 - \hat{p}_2}}$$
$$= \frac{(\hat{p}_1 - \hat{p}_2) - 0}{\sqrt{\hat{p}\hat{q}\left(\frac{1}{n_1} + \frac{1}{n_2}\right)}}$$

Test statistic for the hypothesis test of two proportions, proportions hypothesized to differ by a fixed amount (non-zero) (p. 446)

$$egin{aligned} z &= \; rac{(\hat{p}_1 - \hat{p}_2) - \mu_{\hat{p}_1 - \hat{p}_2}}{S_{\hat{p}_1 - \hat{p}_2}} \ &= \; rac{(\hat{p}_1 - \hat{p}_2) - \mu_{\hat{p}_1 - \hat{p}_2}}{\sqrt{rac{\hat{p}_1 \hat{q}_1}{n_1} \, + \, rac{\hat{p}_2 \hat{q}_2}{n_2}}} \end{aligned}$$

Constructing a confidence interval estimate for the difference in population proportions (p. 444)

$$(-\hat{p}_2) \pm z$$
-score $\sqrt{\frac{\hat{p}_1\hat{q}_1}{n_1} + \frac{\hat{p}_2\hat{q}_2}{n_2}}$

Calculating Chi-square test statistic (pp. 449, 461)

$$\chi^2 = \sum \frac{(o_i - e_i)^2}{e_i}$$

 $(\hat{p}_1$

Calculating expected values for a contingency table (p. 460)

expected value = $\frac{(\text{row total})(\text{column total})}{-}$ (grand total)

CHAPTER 13

Calculating the residual for a leastsquares line (p. 489)

$$e_i = y_i - \hat{y}_i$$

Test statistic for a hypothesis test about the slope of the regression line (p. 509)

$$t = \frac{b_1}{s_{b_1}}$$

CHAPTER 14

Calculating the test statistic for hypothesis test of overall regression model (p. 542)

$$F = -\frac{\frac{SSR}{k}}{\frac{SSE}{n - (k + 1)}} = \frac{MSR}{MSE}$$

Copyright © 2011 Pearson Canada Inc.

test of the
$$z = \frac{\hat{p} - p}{\sigma_{\hat{p}}} = \frac{\hat{p} - p}{\sqrt{\frac{pq}{n_{ST}}}}$$

Test statistic for the hypothesis test of the difference in means, independent samples, unequal variances, p. 380

$$t = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$

Constructing a confidence interval estimate for the difference in population means, independent samples, unequal variances (p. 381)

 $(\bar{x}_1 - \bar{x}_2) \pm t$ -score $\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$

Test statistic for W_1 , in the Wilcoxon

 $= \frac{W_1 - \frac{n_1(n_1 + n_2 + 1)}{2}}{\sqrt{\frac{n_1n_2(n_1 + n_2 + 1)}{12}}}$

Rank Sum Test, $n_i \ge 10$ (p. 391)

 $z=rac{W_1-\mu_{\scriptscriptstyle W_1}}{\sigma_{\scriptscriptstyle W_2}}$

Type of Investigation	Type of Data	Graph	Numerical Measure(s)	Inferential Techniques
What are the characteristics of this distribution of quantitative data?	Single-variable quantitative data • Organize in a frequency distribution	 Histogram Comment on shape and skewness 	 Measure of central tendency and measure of variability See Guide to Decision Making: Choosing a Measure of Central Tendency on page 114 See Guide to Decision Making: Choosing a Measure of Variability on page 131 	 Hypothesis tests about μ (Chapter 7) Confidence intervals about μ (Chapter 8)
Compare two or more distributions of quantitative data	Two or more sets of single-variable quantitative data • Organize in frequency distributions (use relative frequencies where appropriate)	 Two or more histograms set up for easy comparison Comment on shape and skewness See Guide to Technique: Comparing Histograms on page 60 	 Measures of central tendency and measures of variability See Guide to Decision Making: Choosing a Measure of Central Tendency on page 114 See Guide to Decision Making: Choosing a Measure of Variability on page 131 	Matched Pairs • Hypothesis tests about μ_D (Chapter 9) • Confidence intervals about μ_D (Chapter 9) • Wilcoxon Signed Rank Sum Test (Chapter 9) Independent Samples • <i>t</i> -test of $\mu_1 - \mu_2$ (Chapter 10) • Confidence intervals about $\mu_1 - \mu_2$ (Chapter 10) • Wilcoxon Rank Sum Test (Chapter 10) • ANOVA (Chapter 11)
What are the characteristics of the qualitative categories?	Collection of data with one qualitative characteristic, with two or more levels • Organize in a simple table	Bar graph (or pie chart, if there are relatively few categories and share of the total is important)	Frequencies or relative frequencies of categories	 Hypothesis test about <i>p</i> (Chapter 7) Confidence intervals about <i>p</i> (Chapter 8) χ² hypothesis test about goodness of fit (Chapter 12)
 Compare two or more distributions of qualitative data What are the characteristics of the qualitative categories? Are these qualitative categories related? 	 Collection of data with two (or more) qualitative characteristics, each with two or more levels Organize in a contingency table (at least a 2 × 2 table) 	Bar graph with two or more bars in each category	Frequencies or relative frequencies of categories	 Hypothesis test about difference in matched pairs of ranked data, Sign Test (Chapter 9) Hypothesis test about locations of populations of independent ranked data, Wilcoxon Rank Sum Test (Chapter 10) Hypothesis test about p₁ - p₂ (Chapter 12) Confidence intervals about p₁ - p₂ (Chapter 12) χ² hypothesis test for testing many proportions, or testing for independence (Chapter 12)
What are the trends over time? • Compare trends over time for two or more variables	Time-series data (generally quantitative)	 Line graph, with time on the <i>x</i>-axis Multiple lines on the graph if time series are being compared 	 Absolute change or percentage change over time Significant increases or decreases noted, citing specific values Significant changes in trend noted, citing specific values 	
Are these variables related/associated and, if so, how?	• Paired data, quantitative or ranked, of the form $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$	Scatter diagram for quantitative data • Explanatory variable on the <i>x</i> -axis • Response variable on the <i>y</i> -axis	 Pearson r or Spearman r Coefficient of determination, R² See Guide to Decision Making: Choosing a Measure of Association on page 142 	 Hypothesis test about the regression relationship (Chapters 13 & 14) Regression confidence and prediction intervals (Chapters 13 & 14)
	• Quantitative response (<i>y</i>) variable, with quantitative or qualitative explanatory variables (more than one)		• Adjusted <i>R</i> ²	