Brief Contents

PART I	INT	RODUCTION	1	
	1	Using Data to Make Better Decisions	1	
PART II	DES	CRIPTIVE STATISTICS	25	
	2	Using Graphs and Tables to Describe Data	25	
	3	Using Numbers to Describe Data	100	
PART III	BUI	LDING BLOCKS FOR INFERENTIAL STATISTI	CS 152	
	4	Calculating Probabilities	152	
	5	Probability Distributions	184	
	6	Using Sampling Distributions to Make Decisions	224	
PART IV	MA	(ING DECISIONS	259	
	7	Making Decisions with a Single Sample	259	
	8	Estimating Population Values	297	
	9	Making Decisions with Matched-Pairs Samples, Quantitative or Ranked Data	325	
	10	Making Decisions with Two Independent Samples, Quantitative or Ranked Data	371	
	11	Making Decisions with Three or More Samples, Quantitative Data—Analysis of Variance (ANOVA)	399	
	12	Making Decisions with Two or More Samples, Qualitative	Data 437	
PART V	ANA	LYZING RELATIONSHIPS	477	
	13	Analyzing Linear Relationships, Two Quantitative Varia	ibles 477	
	14	Analyzing Linear Relationships, Two or More Variables	525	

Contents

Table of Guides xivTable of Excel Instructions and Excel Templates xvTable of Examples xviiA Note to Students: How to Get the Most Out of This Text xxPreface xxiUsing Microsoft®Excel for Analyzing Data and Making Decisions xxvi

Why Excel? xxvi • Excel Templates xxviii • Additional Excel Add-ins xxix • Excel Data Sets xxx

PART I INTRODUCTION

	Using	Data	to	Make	Better	D	eci	isions	1
--	-------	------	----	------	---------------	---	-----	--------	---

1

INTRODUCTION 1

1.1 Getting the Data 2

Primary and Secondary Data 3

1.2 Sampling 5

Why Sampling Is Necessary 5 Nonstatistical Sampling 5 Statistical Sampling 7 Sampling and Nonsampling Error 11

- **1.3 Analyzing the Data** 12
- **1.4 Making Decisions** 15
- **1.5 Communication** 18

1.6 A Framework for Data-Based Decision Making 19

Chapter Summary 21 • Chapter Review Exercises 22

PART II DESCRIPTIVE STATISTICS 25

```
2 Using Graphs and Tables to Describe Data 25
```

INTRODUCTION 25

2.1 Types of Data 26

Quantitative and Qualitative Data 27 Quantitative Data: Discrete or Continuous? 28 Qualitative Data: Ranked or Unranked? 29 Cross-Sectional and Time-Series Data 29

2.2 Frequency Distributions and Histograms for Quantitative Data 30

Stem-and-Leaf Displays 30

Frequency Distributions 33

GUIDE TO TECHNIQUE Setting Up Appropriate Classes for a Frequency

Distribution 38

Histograms 44 Symmetry and Skewness 52 Comparing Histograms 55 GUIDE TO TECHNIQUE Comparing Histograms 60

	2.3 2.4 2.5 2.6	Tables, Bar Graphs, and Pie Charts for Qualitative Data62Bar Graphs and Pie Charts for a Simple Table62Bar Graphs for Contingency Tables66Time-Series Graphs70Scatter Diagrams for Paired Quantitative Data76Misleading and Uninteresting Graphs80Misleading Graphs80Uninteresting Graphs88	
	Cha	pter Summary 92 • Chapter Review Exercises 93	
2	llei	ing Numbers to Describe Data 100	
5	INTE		
	3 1	Some Useful Notation 101	
	0.1	Order of Operations 101 Summation Notation 101 Some Examples 102	
	3.2	Measures of Central Tendency 105	
		The Median 105	
		The Mode 111	
		Which Measure of Central Tendency Is Best? 113	
		GUIDE TO DECISION MAKING Choosing a Measure of Central Tendency 1	14
	3.3	Measures of Variability 115	
		The Standard Deviation 116	
		The Interquartile Range 127	
		GUIDE TO DECISION MAKING Choosing a Measure of Variability 131	
	3.4	Measures of Association 132	
		The Pearson Correlation Coefficient for Quantitative Variables 132	
		The Spearman Rank Correlation Coefficient for Ranked Variables	138
	Cha	nter Summary 145 • Chanter Review Exercises 147	
	ona		
BUII		NG BLOCKS FOR INFERENTIAL STATISTICS 152	
Δ	Cal	culating Probabilities 152	
	INTE		
	4.1	Sample Spaces and Basic Probabilities 154	
	4.2	Conditional Probabilities and the Test for Independence 160 Conditional Probabilities 160 The Test for Independence 162	
	4.3	"And," "Or," and "Not" Probabilities 165 "And" Probabilities 165 "Or" Probabilities 170	
		"Not" Probabilities 172	
	Cha	pter Summary 177 • Chapter Review Exercises 178	

PART III

5 Probability Distributions 184 **INTRODUCTION** 184 5.1 Probability Distributions 185 Building a Discrete Probability Distribution 185 Mean and Standard Deviation of a Probability Distribution 186 5.2 The Binomial Probability Distribution 189 Conditions for a Binomial Experiment 189 Mean and Standard Deviation of a Binomial Distribution 190 Checking the Conditions for a Binomial Experiment 190 Calculating Binomial Probabilities 192 5.3 The Normal Probability Distribution 202 Chapter Summary 219 • Chapter Review Exercises 221 6 Using Sampling Distributions to Make Decisions 224 **INTRODUCTION** 224 6.1 The Decision-Making Process for Statistical Inference 225 6.2 The Sampling Distribution of the Sample Mean 233 An Empirical Exploration of the Sampling Distribution of \bar{x} 236 When Is the Sampling Distribution Normal? The Central Limit Theorem 240 **GUIDE TO DECISION MAKING** Using the Sampling Distribution of \bar{x} to Decide About μ When σ Is Known 243 6.3 The Sampling Distribution of the Sample Proportion 244 Making Decisions About Population Proportions with the Binomial Distribution 244 GUIDE TO DECISION MAKING Using the Sampling Distribution of \hat{p} to Decide **About** *p* 252 6.4 Hypothesis Testing 254 Chapter Summary 255 • Chapter Review Exercises 256 PART IV MAKING DECISIONS 259 7 Making Decisions with a Single Sample 259 **INTRODUCTION** 259

7.1 Formal Hypothesis Testing 260

The Null and the Alternative Hypotheses 260

One-Tailed and Two-Tailed Hypothesis Tests 261

Making a Decision: Rejecting or Failing to Reject the Null Hypothesis 262

Significance Level and Type I and Type II Errors 263

Deciding on the Basis of *p*-Values 265

GUIDE TO TECHNIQUE Calculating *p*-Values 265

GUIDE TO TECHNIQUE Steps in a Formal Hypothesis Test 268

7.2 Deciding About a Population Proportion— The z-Test of p 269

GUIDE TO DECISION MAKING Hypothesis Test to Decide About a Population Proportion 274

7.3 Deciding About the Population Mean— The *t*-Test of μ 276 The *t*-Distribution 276 GUIDE TO DECISION MAKING Hypothesis Test to Decide About a Population Mean 288 How Normal Is Normal Enough? 289 Chapter Summary 291 • Chapter Review Exercises 292 8 Estimating Population Values 297 **INTRODUCTION** 297 8.1 Estimating the Population Proportion 299 GUIDE TO TECHNIQUE Creating a Confidence Interval Estimate for p 304 8.2 Estimating the Population Mean 306 GUIDE TO TECHNIQUE Creating a Confidence Interval Estimate for μ 309 **8.3 Selecting the Sample Size** 312 Sample Size to Estimate a Mean 312 GUIDE TO TECHNIQUE Choosing the Sample Size to Estimate μ 314 Sample Size to Estimate a Proportion 315 GUIDE TO TECHNIQUE Choosing the Sample Size to Estimate p 316 8.4 Confidence Intervals and Hypothesis Tests 317 Chapter Summary 320 • Chapter Review Exercises 321 9 Making Decisions with Matched-Pairs Samples, Quantitative or Ranked Data 325 **INTRODUCTION** 325 9.1 Matched Pairs, Quantitative Data, Normally Distributed Differences— The t-Test and Confidence Interval of μ_{B} 327 Confidence Interval Estimate of μ_D 335 GUIDE TO DECISION MAKING Matched Pairs, Quantitative Data, Normal Differences—The *t*-Test to Decide About the Average Population Difference μ_D 335 Confidence Interval Estimate of μ_D 335 9.2 Matched Pairs, Quantitative Data, Non-Normal Differences— The Wilcoxon Signed Rank Sum Test 339 GUIDE TO DECISION MAKING Matched Pairs, Quantitative Data, Non-Normal Differences—The Wilcoxon Signed Rank Sum Test to Decide About the Difference in Matched **Populations** 352 Quantitative Matched-Pairs Data: Which Test? 353 9.3 Matched Pairs, Ranked Data— The Sign Test 355 GUIDE TO DECISION MAKING Matched Pairs, Ranked Data-The Sign Test to Decide About the Difference in Matched Populations 361

Chapter Summary 363 • **Chapter Review Exercises** 364

Confidence Interval Estimate of $p_1 - p_2$ 444

XVI	CON	TENTS

GUIDE TO DECISION MAKING Comparing Two Population Proportions 445

12.2 χ^2 Goodness-of-Fit Tests 448 GUIDE TO DECISION MAKING χ^2 Goodness-of Fit Test to Compare Proportions in One Population with a Desired Distribution 457

12.3 Comparing Many Population Proportions or Testing Independence χ^2 Testof a Contingency Table459

Comparing Many Population Proportions 459 Testing for Independence 463

GUIDE TO DECISION MAKING Contingency Table Tests to Compare Proportions Across Many Populations, or Decide About the Independence of Population Characteristics 466

Chapter Summary 470 • Chapter Review Exercises 472

PART V ANALYZING RELATIONSHIPS 477

Analyzing Linear Relationships, Two Quantitative Variables 477 13 **INTRODUCTION** 477 13.1 Creating a Graph and Determining the Relationship— Simple Linear Regression 478 Creating a Graph of the Relationship 479 Determining the Relationship 480 **13.2 Assessing the Model** 488 The Theoretical Model 488 Checking the Required Conditions 489 GUIDE TO TECHNIQUE Checking Requirements for the Linear **Regression Model** 504 13.3 Hypothesis Test About the Regression Relationship 505 GUIDE TO DECISION MAKING Testing the Slope of the Regression Line for Evidence of a Linear Relationship 509 **13.4 How Good Is the Regression?** 510 13.5 Making Predictions 513 Chapter Summary 520 • Chapter Review Exercises 521 14 Analyzing Linear Relationships, Two or More Variables 525 **INTRODUCTION** 525 14.1 Determining the Relationship— Multiple Linear Regression 526 Creating Graphs to Examine the Relationships Between the Response Variable and the Explanatory Variables 527 Determining the Relationship Between the Response Variable and the Explanatory Variables 529 14.2 Checking the Required Conditions 531 The Theoretical Model 531 Examining the Residuals 532

	GUIDE TO TECHNIQUE Checking Requirements for the Linear Multiple
	Regression Model 540
	14.3 How Good is the Regression? 541
	Is the Regression Model Significant?—The F-Test 542
	Are the Explanatory Variables Significant?—The <i>t</i> -Test 544
	Adjusted Multiple Coefficient of Determination 546
	14.4 Making Predictions 548
	14.5 Selecting the Appropriate Explanatory Variables 550
	A New Consideration: Multicollinearity 556
	14.0 Using indicator variables in multiple Regression 559
	14.7 Mole Auvalieu moueining 363 Chanter Summary 566 • Chanter Review Exercises 568
Appendix 1	Cumulative Binomial Tables 574
Appendix 2	Standard Normal Table 578
Appendix 3	Critical Values for the <i>t</i> -Distribution 580
Appendix 4	Wilcoxon Signed Rank Sum Test Table, Critical Values
	and <i>p</i> -Values 581
Appendix 5	Wilcoxon Rank Sum Test Table, Critical Values 582
Appendix 6	F-Distribution, Critical Values 584
Appendix 7	Critical Values of <i>q</i> 586
Appendix 8	Critical Values for the χ^2 -Distribution 590

Glossary 591 • Index 593

Table of Guides

The following is a list of Guides used in this text.

CHAPTER 2

Setting Up Appropriate Classes for a Frequency Distribution, p. 38 Comparing Histograms, p. 60

CHAPTER 3

Choosing a Measure of Central Tendency, p. 114 Choosing a Measure of Variability, p. 131 Choosing a Measure of Association, p. 142

CHAPTER 6

Using the Sampling Distribution of \overline{x} to Decide About μ When σ Is Known, p. 243 Using the Sampling Distribution of \hat{p} to Decide About p, p. 252

CHAPTER 7

Calculating *p*-Values, p. 266 Steps in a Formal Hypothesis Test, p. 268 Hypothesis Test to Decide About a Population Proportion, p. 274 Hypothesis Test to Decide About a Population Mean, p. 288

CHAPTER 8

Creating a Confidence Interval Estimate for *p*, p. 304
Creating a Confidence Interval Estimate for μ, p. 309
Choosing the Sample Size to Estimate μ, p. 314
Choosing the Sample Size to Estimate *p*, p. 316

CHAPTER 9

Matched Pairs, Quantitative Data, Normal Differences—The *t*-Test to Decide About the Average Population Difference ($\mu_{
ho}$), p. 335 Matched Pairs, Quantitative Data, Non-Normal Differences—The Wilcoxon Signed Rank Sum Test to Decide About the Difference in Matched Populations, p. 352 Matched Pairs, Ranked Data—The Sign Test to

Decide About the Difference in Matched Populations, p. 361

CHAPTER 10

Independent Samples, Normal Quantitative Data— The *t*-Test of $\mu_1 - \mu_2$ to Decide About the Difference in Two Population Means, p. 380 Independent Samples, Non-Normal Quantitative Data or Ranked Data—The Wilcoxon Rank Sum Test to Decide About the Difference in Two Population Locations, p. 391

CHAPTER 11

Three or More Independent Samples, Normal Quantitative Data—One-Way ANOVA to Decide About the Equality of Population Means, p. 419

CHAPTER 12

Comparing Two Population Proportions, p. 445 χ^2 Goodness-of-Fit Test to Compare Proportions in One Population with a Desired Distribution, p. 457 Contingency Table Tests to Compare Proportions Across Many Populations, or Decide About the Independence of Population Characteristics, p. 466

CHAPTER 13

Checking Requirements for the Linear Regression Model, p. 504 Testing the Slope of the Regression Line for Evidence of a Linear Relationship, p. 509

CHAPTER 14

Checking Requirements for the Linear Multiple Regression Model, p. 540

Table of Excel Instructions and Excel Templates

The following is a list of Excel instructions and templates used in this text. Note: Excel's Data Analysis Tools may need to be turned on. See Using Microsoft[®] Excel for Analyzing Data and Making Decisions on page xxvi for more information.

CHAPTER 1

Taking a Random Sample with Random Number Generation, p. 8

CHAPTER 2

Class Width Template, p. 34 Histogram Tool, p. 39 Histogram Chart, Exhibit 2.29, p. 45 Adjusting Excel's Histogram, p. 46 Bar Graph, p. 63 Pie Chart, p. 64 Contingency Table, p. 67 Line Graph, p. 72 Scatter Diagram, p. 77 Adjust Axis Scale, p. 81

CHAPTER 3

MEDIAN Function, p. 109 MODE Function, p. 112 STDEV Function, p. 118 QUARTILE Function, p. 129 PEARSON Function, p. 134 Non-Parametric Tools, p. 141 Spearman Rank Correlation Coefficient Calculation, p. 141

CHAPTER 5

BINOMDIST Function, p. 195 NORMDIST Function, p. 205 NORMINV Function, p. 209

CHAPTER 7

Organizing Coded Data, p. 271 Excel Template for Making Decisions About a Population Proportion with a Single Sample, p. 272 TDIST Function, p. 279 Excel Template for Making Decisions About the Population Mean with a Single Sample, p. 280 AVERAGE/STDEV/COUNT Functions, p. 281

CHAPTER 8

Excel Template for a Confidence Interval Estimate of the Population Proportion, Exhibit 8.8, p. 305 Excel Template for a Confidence Interval Estimate of the Population Mean, Exhibit 8.14, p. 311

CHAPTER 9

Excel Template for Making Decisions About the Population Mean with a Single Sample for Matched Pairs, p. 330 Data Analysis *t*-Test: Paired Two Sample for Means, p. 330 Excel Template for a Confidence Interval Estimate of μ_D , Exhibit 9.13, p. 337 Wilcoxon Signed Rank Sum Test Calculations, p. 347 Sign Test Calculations, Add-In and Template, p. 358

CHAPTER 10

Data Analysis t-Test: Two-Sample Assuming Unequal Variances, p. 373 Excel Template for t-Test of Mean, p. 378 Excel Template for Confidence Interval Estimate for the Difference in Population Means, p. 382 Wilcoxon Rank Sum Test Calculations Add-In and Template, p. 388

CHAPTER 11

VAR Function, p. 406 FDIST Function, p. 414 Data Analysis Anova: Single Factor, p. 414 Excel Template for the Tukey-Kramer Confidence Interval, p. 426

CHAPTER 12

Excel Template for Making Decisions About Two Population Proportions, $H_0: p_1 - p_2 = 0$, p. 442 Excel Template for Making Decisions About the Difference in Population Proportions, $H_0: p_1 - p_2 =$ Fixed Amount, p. 444 Excel Template for the Confidence Interval Estimate for the Difference in Population Proportions, p. 447 Excel's CHITEST Function for a χ^2 Goodness-of-Fit Test, p. 456 Chi-Squared Expected Values Calculations, p. 462

CHAPTER 13

Add Trendline, Exhibit 13.5, p. 483
Regression Tool, p. 485
Regression Residuals, p. 492
Regression Output for Hypothesis Test About the Regression Relationship, p. 507
Regression output for *R*², p. 511
Multiple Regression Tools for Confidence and Prediction Intervals, p. 514

CHAPTER 14

Regression Tool for Multiple Regression, Exhibit 14.4, p. 530 Residual Output, p. 532 Plots of Residuals VS. Predicted Values, p. 533 Residual Plots, p. 534 Confidence Interval and Prediction Intervals – Calculations, p. 548 All Possible Regressions Calculations, p. 552

Table of Examples

The following is a list of Examples used in this text.

CHAPTER 1

Example	1.1	Secondary data, p. 3
Example	1.2A	Nonstatistical sampling, p. 6
Example	1.2B	Nonstatistical sampling, p. 6
Example	1.2C	Random sampling with Excel, p. 8
Example	1.3	Analyzing the data, p. 13
Example	1.4A	Cause and effect cannot be conclude
		from observational studies, p. 16
Example	1.4B	Cause and effect may be concluded
		from experimental studies, p. 16
Example	1.5	State conclusions carefully, p. 18

CHAPTER 2

Example 2.2A	Setting up a frequency distribution
	with Excel, p. 42
Example 2.2B	Modifying Excel's automatic
	histogram, p. 51
Example 2.3	Using Excel to create a bar graph with
	coded data, p. 64
Example 2.4	Graphing time-series data, p. 73
Example 2.5	Graphing paired quantitative
	data, p. 77

CHAPTER 3

Example	3.1A	Evaluating	Σ <i>x</i> , p. 103
Example	3.1B	Evaluating	Σx^2 , p. 103
Example	3.1C	Evaluating	$(\Sigma x)^2$, p. 103
Example	3.1D	Evaluating	Σ <i>xy</i> , p. 103
Example	3.1E	Evaluating	$\Sigma(x-6)$, p. 104
Example	3.1F	Evaluating	$\Sigma(x - 6)^2$, p. 104
Example	3.1G	Evaluating	$\Sigma \frac{(x-6)^2}{n-1}$, p. 104
Example	3.1H	Evaluating p. 104	$\Sigma(x-6)(y-3),$

Example 3.2A	Using Excel to calculate <mark>the</mark> mean, p. 107
Example 3.2B	The mean is greatly affe <mark>ctedby</mark> extreme values, p. 108
Example 3.2C	Finding the median in a <mark>data set,</mark> p. 109
Example 3.3A	Calculating standard deviation with Excel, p. 118
Example 3.3B	Calculating the standard deviation with the computational formula, p. 119
Example 3.3C	Applying the Empirical Rule, p. 126
Example 3.3D	Finding the 75 th percentile, p. 128
Example 3.3E	Calculate the interquartile range, p. 129
Example 3.4A	Calculating the Pearson correlation coefficient, p. 138
Example 3.4B	Calculating the Spearma <mark>n rank</mark> correlation coefficient, p <mark>. 139</mark>

CHAPTER 4

Example 4.1	Representing a sample space with a
	contingency table, a joint probability
	table, and a tree diagram, p. 157
Example 4.2A	Calculating conditional probabilities, p. 162
Example 4.2B	Testing for independence, p. 163
Example 4.3A	The rule of multiplication: calculating "and" probability, p. 169
Example 4.3B	The rule of addition: calculating "or" probabilities, p. 172
Example 4.3C	Calculating probabilities with a tree diagram and probability rules, p. 175

CHAPTER 5

Example 5.1	Calculating the mean and standard
	deviation of a discrete probability
	distribution, p. 188
Example 5.2A	Calculating binomial probabilities
	with a formula, p. 195

Example 5.2B	Using Excel to calculate the binomial
	probabilities, p. 197
Example 5.2C	Calculating binomial probabilities
	with tables, p. 200
Example 5.3A	Calculating normal probabilities with
	NORMDIST, p. 206
Example 5.3B	Using NORMINV to calculate x-values
	for normal probabilities, p. 209
Example 5.3C	Calculating normal probabilities with
•	a table, p. 215
	/ 1

CHAPTER 6

Example 6.1A	Using a sampling distribution to
	decide if a sample mean is unusual,
	p. 230
Example 6.1B	Using a sampling distribution to
·	decide whether a sample proportion
	is unusual. p. 231
Example 6.2A	Constructing a sampling distribution
	and using it to decide about a
	population mean, p. 235
Example 6.2B	Assessing population normality,
·	constructing a sampling distribution.
	and using it to decide about a
	population mean, p. 241
Example 6.3A	Using the binomial distribution to
·	make a decision about a population
	proportion, p. 245
Example 6.3B	Using the sampling distribution
·	of \hat{p} to make a decision about a
	population proportion, p. 250
Example 6.3c	Using the sampling distribution
•	of \hat{p} to make a decision about a
	population proportion, p. 251
	peparation propertient, primer

CHAPTER 7

Example 7.1A	Setting up correct null and alterna-
	tive hypotheses, p. 260
Example 7.1B	Type I and Type II errors, p. 264
Example 7.1C	Calculating <i>p</i> -values, p. 267
Example 7.2A	Hypothesis test about a population
	proportion, summary data, p. 269
Example 7.2B	Hypothesis test about a population
	proportion with coded data, p. 271
Example 7.3A	Right-talled hypothesis test about
	a population mean, p. 277
Example 7.3b	Right-tailed hypothesis test about
	a population mean, p. 281
Example 7.3C	Estimating <i>p</i> -values from the table
	of critical values for the
	t-distribution, p. 285
Example 7.3D	Two-tailed hypothesis test about
	apopulation mean, p. 287

CHAPTER 8

Example 8.1	Constructing a confidence interval
	estimate for <i>p</i> , p. 304
Example 8.2	Constructing a confidence interval
	estimate for μ , p. 309
Example 8.3A	Deciding on sample size to
	estimate μ , p. 315
Example 8.3B	Deciding on sample size to
	estimate p, p. 316
Example 8.4	Using a confidence interval for a
	hypothesis test, p. 318

CHAPTER 9

28
32
5
ļ

CHAPTER 10

Example	10.1A	<i>t</i> -Test for independent samples,
		using Excel, p. 374
Example	10.1B	<i>t</i> -Test for independent samples,
		using <i>t</i> -table, p. 377
Example	10.1C	Confidence interval for difference in
		means, p. 381
Example	10.2A	Wilcoxon Rank Sum Test, sample
		sizes \geq 10, p. 385
Example	10.2B	Wilcoxon Rank Sum Test, sample
		size $<$ 10, p. 389

CHAPTER 11

Example 11.1	Checking	conditions	for	one-factor
	ANOVA, p	. 405		

- Example 11.2 One-factor ANOVA, p. 416
- Example 11.3 Using the Tukey-Kramer approach to find out which means differ, p. 424

CHAPTER 12

Example 12.1A	Comparing two proportions,
	no difference in proportions,
	coded data, p. 441

Example 12.1B Comparing two proportions, non-zero difference in proportions, p. 443

Exampl	е	12.1C	Confidence interval for difference in	
			proportions, p. 446	
			2	

- Example 12.2A χ^2 goodness-of-fit test, p. 450 Example 12.2B Goodness-of-fit test, adjusting
- when $e_i < 5$, p. 453 Example 12.3A Contingency table test, comparing
- many populations, p. 460
- Example 12.3B Contingency table test for independence, p. 465

CHAPTER 13

- Example 13.2 Influential observations, p. 498
- Example 13.3 Hypothesis test of β_1 with Excel, p. 508
- Example 13.4 Interpreting R^2 , p. 512
- Example 13.5 Calculating a confidence interval estimate for an average y, given x, p. 518

CHAPTER 14

- Example 14.2 Checking conditions for linear multiple regression, p. 537 Example 14.3A Hypothesis test of significance of
- regression model, p. 543
- Example 14.3B Hypothesis tests of individual coefficients in regression model, p. 545
- Example 14.4 Calculating confidence and prediction intervals with Excel, p. 549
- Example 14.5A Assess all possible regressions, p. 554
- Example 14.5B Multiple regression, dealing with collinearity, p. 558
- Example 14.6 Regression with a qualitative explanatory variable, p. 562